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Abstract. In small and medium-sized basins or in rivers
characterized by intermittent discharges, with low or negligi-
ble/null observed values for long periods of the year, the cor-
rect representation of the discharge regime is important for
issues related to water management and to define the amount
and quality of water available for irrigation, domestic and
recreational uses. In these cases, only one index as a statis-
tical metric is often not enough; it is thus necessary to intro-
duce Flow Duration Curves (FDC).

The aim of this study is therefore to combine a stochastic
index flow model capable of reproducing the FDC record pe-
riod of a river, regardless of the persistence and seasonality
of the series, with the theory of total probability in order to
calculate how often a river is dry.

The paper draws from preliminary analyses, including a
study to estimate the correlation between discharge indica-
tors Q95, Q50 and Q1 (discharges exceeding 95%, 50% or
1% of the time, respectively) and some fundamental char-
acteristics of the basin, as well as to identify homogeneous
regions in the target area through the study of several geo-
morphological features and climatic conditions. The stochas-
tic model was then applied in one of the homogeneous re-
gions that includes intermittent rivers.

Finally, the model was regionalized by means of regres-
sion analysis in order to calculate the FDC for ungauged
basins; the reliability of this method was tested using jack-
knife validation.

1 Introduction

An accurate representation of a river regime is essential
to several engineering applications, such as the analysis of
hydroelectric feasibility, reservoir and lake sedimentation,
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water resources management and environmental planning.
An important environmental problem related to this issue
is wastewater discharge into rivers: in fact, legislation has
restricted discharge into rivers characterized by no flow for
long periods.

Flow Duration Curves (FDC), which represent the per-
centage of time during which the discharge of a river is ex-
ceeded, can be used as a tool to accurately represent the
streamflow frequency regime and can be applied to all these
hydrological applications. The FDC can be easily calculated
as the complement of the cumulative distribution function
(cdf) from a gauged river; this information is also essential
for ungauged basins.

FDC characteristics were synthesised by Searcy (1959).
Later, Smakhtin (2001) revised the argument on low flows
in hydrology, outlining the use of flow duration curves that
had been used up to then. FDC have been calculated in
ungauged basins in several studies (Quimpo et al., 1983;
Mimikou and Kaemaki, 1985; Claps and Fiorentino, 1997;
Smakhtin et al., 1997; Ganora et al., 2009); additional stud-
ies have provided analysis of the uncertainty of FDC (Yu
et al., 2002) and the development of a stochastic model for
calculating FDC (LeBoutillier and Waylen, 1993; Cigizoglu
and Bayazit, 2000). Vogel and Fennessey (1994) introduced
Annually-Based Flow Duration Curves (AFDC), which are
useful for making probabilistic considerations of the dis-
charge of dry, wet and average years and for calculating the
inter-annual variability associated with AFDC. Castellarin et
al. (2004) introduced a similar approach to that of the dis-
charge index to model the relationship between FDC and
AFDC in daily discharges. This method can reproduce FDC
and also mean, median and variance of AFDC without as-
sumptions based on the seasonal and persistence structure of
daily discharges.

These methods do not allow for the calculation of flow du-
ration curves on basins with an intermittent regime, where
the above-mentioned environmental problems are critical.
These basins are characterized by flash floods and have no
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base flow, or their base flow is restricted to only the wet pe-
riods of the year, while for the rest of the year there is no
flow.

The presence of zeros in a discharge time series can be real
or can occur when the discharge is beneath a threshold and
the instruments cannot take any measurements, as in the case
of censored data (Durrans et al., 1999). Several studies have
focused on various methods to work with zero data in fre-
quency analysis (e.g. Jennings and Benson, 1969; Kilmartin
and Peterson, 1972; Haan, 1977; Wang and Singh, 1995),
while others have concentrated more on techniques for work-
ing with censored data (e.g. Kroll and Stedinger, 1996; Tate
and Freeman, 2000).

The occurrence of zero events can be expressed in prob-
ability theory by substituting a non-zero probability mass
with a zero value. This creates a discontinuity in the density
function from which the hydrological series is obtained, with
discontinuity in the zero value. However, this solution can
create problems with the assumption of continuity made in
frequency analysis. Jennings and Benson (1969) highlighted
the potential problems encountered when a continuous dis-
tribution is fitted with data including zero values.

The literature presents three methodologies for approach-
ing zero data, summarized in Haan (1977):

– The first is to add a small constant to all observations,
such as 1% of the mean magnitude, and fit a continuous
distribution such as the Log-Pearson type III distribu-
tion onto the data (Subcommittee on Hydrology, 1966).
This approach can move the discontinuity represented
by the zero state but does not solve the problem created
by the discontinuity.

– The second ignores the zero values and considers only
the non-zero values and then corrects the results for
the entire period recorded. Haan (1977) and Wang and
Singh (1995) showed that this method is biased, since it
ignores all zero values in the data.

– The third is based on the theorem of total probability
(Jennings and Benson, 1969).

Woo and Wu (1989) and Wang and Singh (1995) developed
empirical three-parameter models for the frequency analysis
of hydrologic data containing zero values starting from the
theorem of total probability. On the other hand, Strupczewski
et al. (2003) proposed a different method based on the hy-
pothesis that the unit impulse response of a linearized Kine-
matic Diffusion (KD) model is a probability distribution suit-
able for frequency analysis of hydrologic samples with zero
values.

The principal aim of this paper is to create a model to cal-
culate FDC for daily streamflows that also works in basins
with intermittent flow in dry climates. In order to reach
this objective, the model combines the stochastic index flow

model (Castellarin et al., 2004) with the theory of total prob-
ability. The stochastic index flow model allows for the com-
putation of a river’s FDC without regard to the persistence
and seasonality of the series and enables the calculation of
conditional distributionF(y|Y > 0), while the theory of total
probability allows an evaluation of the percentage of time the
river is dry. A procedure of regionalisation of the model is
also applied based on the definition of homogeneous regions
in the target area and allows for the definition of equations
that permit the transfer of the model to ungauged basins.

This paper is organized as follows:

1. Definition of the modified stochastic index flow model.

2. Presentation of a case study and the regionalisation
method.

3. Application of the methodology and discussion of the
results.

4. Summary and conclusions.

2 The modified stochastic index flow model

2.1 Flow duration curves

The FDC provide information about the percentage of time
a particular streamflow was exceeded over a given historical
period. For a daily flows series, the FDC can be seen as the
complement of the cumulative distribution function of daily
streamflows based on the complete recording of flows.

A nonparametric approach to construct the FDC can there-
fore be used (Vogel and Fennessey, 1994):

– By re-assembling the observed streamflows in ascend-
ing order.

– By plotting each observation versus its corresponding
duration or exceedance probability. Duration is often
expressed as a percentage and coincides with an esti-
mate of the exceedance probability,ei , of the i-th ob-
servation in the ordered sample.ei can be estimated
using an empirical distribution such as the Weibull plot-
ting position. DurationDi is thus

Di = 100(ei) = 100·

(
1−

i

n+1

)
,

for i = 1,2,3,...,n (1)

wheren is the length of the sample.

It is possible to build FDC with different time resolu-
tions of the discharges, but daily FDC offer the most detailed
means of examining the duration characteristics of a flow.

An approach to modelling daily streamflows and estimat-
ing FDC is based on the stochastic index flow model (Castel-
larin et al., 2004), which is similar to the flood index ap-
proach (Dalrymple, 1960).
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2.2 Standard stochastic index flow model of FDC

The approach used here assumes that daily streamflowX can
be found by multiplying an index flow equal to annual flow
AF by a dimensionless daily streamflowX′,

X = AF ·X′ (2)

The climatic conditions and annual precipitation given for a
basin affect AF. The probability density function,fX′ of stan-
dardized flows is correlated with the geomorphologic charac-
teristics of the basin.

Using this formulation, it is possible to calculate FDC for
the complete recording period of flows as the complement of
the cumulative distribution function (cdf) ofX, FX given by:

Fx(x) = Pr{X ≤ x} =

x∫
xl

fX(u)du= Pr
{
AF ·X′

≤ x
}

=

∫
�X′

x/z∫
afl

fAF,X′ (ν,z)dvdz (3)

�Y = domain of a given random variableY ; fX = pdf of X;
fAF,X′ = joint probability distribution of AF andX′; xl and
afl = lower bounds of�X′ and�AF, respectively.

If it is assumed that AF andX′ are independent, then
fAF,X′ equals the product of the two marginal distributions,
and it is possible to write:

FX(x)=

∫
�X′

fX′(z)

x/z∫
afl

fAF(ν)dνdz=

∫
�X′

fX′(z)FAF(x/z)dz

(4)

whereFAF = cdf of AF; fX′ = pdf of X′.
The FDC can be estimated by plotting the variableX

against the duration, equal to 100(1−FX) (Castellarin et al.,
2004).

2.3 Stochastic index flow model in the presence of zero
data

The problem of the presence of zero data can be solved us-
ing the theorem of total probability, which is used to deter-
mine the probability of occurrence of a non-zero event, given
that a zero event has already occurred (Jennings and Benson,
1969).

The theorem is given by:

Pr(X >x) = Pr(X >x |X = 0)Pr(X = 0)

+ Pr(X >x |X 6= 0)Pr(X 6= 0) (5)

Thus, given that Pr(X >x |X = 0) is zero, and writing this
relationship in the form of cumulative probability distribu-
tions, it is possible to obtain Pr(X ≤ x):

Pr(X ≤ x) = pdry+pnzPr(X ≤ x |X 6= 0) (6)

wherepnz = the percentage of time that the river is flowing
(i.e. Pr(X 6= 0)). pnz can be estimated using the plotting po-
sition formulation;pdry = the percentage of time the river is
dry, equal to 1−pnz.

Therefore the conditional distribution Pr(X ≤ x |X 6= 0)
can be calculated using the stochastic index flow model:

Pr(X ≤ x| X 6= 0) =

∫
�Xnz′

fXnz′ (z) ·FAFnz(x/z)dz (7)

fXnz′ = probability density function of non-zeroX′ values;
FAFnz = cumulative distribution function of non-zero AF
values.

The calculation of conditional distributionFAFnz =

Pr (AF ≤ af |AF 6= 0) and fX′nz = Pr
(
X′

≤ x′
|X′

6= 0
)

with
positive values of the series, carried out using a fitting
procedure. The empirical frequency distribution condi-
tioned by AF> 0 and X′ > 0 can be calculated on non-
zero values using a modified Weibull plotting position (Wang
and Singh, 1995). In fact, it is possible to consider a sit-
uation in which the observed ordered-time series has size
n(y1,...,yk,0,...,0) in ascending order of magnitude, where
y1,...,yk, are all positive, while the othern − k are zero
values. To calculate the Weibull plotting position, it is
not possible to use all then values and the formulation
100(1−m/n+1) for m = 1,...,n, but it is necessary to use
the formulation with only thek positive values:

Di = 100(1− i/k+1), for i = 1,...,k (8)

The general formulation of the stochastic index flow model
for use with zero values is obtained by incorporating Eq. (7)
into Eq. (6):

Pr(X ≤ x) = pdry+pnz·

∫
�Xnz′

fXnz′(z) ·FAFnz(x/z)dz. (9)

3 Case study

The basins of the target area include the Tiber basin as well
as its sub-basins, the basins located in northern Lazio and
those located north and south of the Tiber River. These areas
show considerable lithological variability affecting the large
geomorphological structures.

The geology of the area is connected to volcanic activ-
ity, since one-third of the region is covered with this kind
of geological substrate. The volcanic area has developed in
a NW-SE direction, while the northwestern part of the tar-
get area involves a metamorphic substrate dating back to the
Paleozoic period. The other important geological domain is
the Apennine dorsal positioned in the Southeast of the re-
gion. This macro system is mainly composed of carbonate
sediments dating back to the Mesozoic period and deposited
in different sedimentation environments. Most recent sedi-
ments in the area are quaternary deposits that make up coastal
plains and river valleys.
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The geomorphologic characteristics of the region are
closely connected to the geological domains. In fact, the
big geomorphologic domains coincide with recognized ge-
ological structures: the big volcanic districts, the Apennine
dorsal, the coastal plains and the remaining Tiber valley. In
these big geomorphologic structures, it is possible to identify
uniformity and therefore distinctive morphotypes.

The hydrographic structure is controlled by the Tiber River
system in the northern part of the region and by the river
systems in the South of Tiber. The Tiber River basin covers
about 17 200 km2 and represents the main watercourse of the
area.

The Tiber River has an Apennine trend in its initial reach
and flows with a torrential regime. Along its right bank, the
river collects water from different volcanic districts. From
its left bank, it receives water from the Apennine carbon-
ate structures. These contributions stabilize the regime. The
Tiber River shows a large difference in hydrographic struc-
ture between the basins belonging to the right and left banks.
This difference is due to the different ways in which the vol-
canic systems move, compared to those of carbonate struc-
tures characterized by a lower drainage density.

The river basins in the southern part of the study area make
up about 4 900 km2 and, with the Tiber River, supply the area
with 80% of the total runoff. Within these river basins, the
permeability characteristics and morpho-topographic struc-
tures, mainly represented by carbonate platform deposits,
determine the highly effective infiltration and consequently
slow development of the hydrographic network and low over-
land flow.

The river basins in northern Lazio have been formed on ge-
ological formations with low permeability and a hydrological
regime characterized by high overland flow from autumn to
winter, when their discharges are 3–4 times higher than those
in summer.

The karst system is also particularly developed both in the
mountains in the north-east area and in the Apennine dorsal,
where there are mostly extended karst shapes of large dimen-
sion. Moreover, this area has a highly variable climate due to
two major bio-climate regions, temperate and Mediterranean,
and the relative transitional regions.

The significant differences in the study area are high-
lighted in the map of the digital elevation model in Fig. 1,
where it is possible to recognize the main basins of the re-
gion.

The hydrological data used for the analysis came from the
Ufficio Idrografico e Mareografico of Lazio Region. At least
6 years’ worth of daily recorded discharges from 26 stations
in the study area were used.

Quantiles Q95, Q50 and Q1, were estimated. In particular,
the minimum discharge Q95 is widely used in Europe and
was chosen because of its importance for many applications
relating to water management, as in Gustard et al. (1992),
Smakhtin (2001) and Laaha and Bloshl (2007).

 

0 100 Kilometers

N

Altitude [m]

0 - 272
273 - 544
545 - 816
817 - 1088
1089 - 1361

1362 - 1633
1634 - 1905

1906 - 2177

Divide

Fig. 1. Digital elevation model of the study area. The main basins
in the area are divided with black lines.

Each station selected for this study was considered as a
separate basin. Thus for basins that do not have upstream
stations, the quantiles were calculated directly from the dis-
charge data, by adapting the data of each station to the best
possible distribution and then calculating the relative quan-
tiles. The nested basins were, however, divided into sub-
basins separated by several measurement stations; the quan-
tiles were calculated as the difference between the quantiles
of the upstream and downstream stations. This last estima-
tion is more robust than the quantile calculated from the dif-
ference between the hydrographs, but it requires the mean
maximum and minimum flow rates to be synchronized in dif-
ferent stations. Furthermore, this method reduces the spatial
dependence of discharge data (Laaha and Bloshl, 2007). It is
necessary to bear in mind that, in the absence of isochrones,
error may also be high. All quantiles Q95, Q50 and Q1 have
also been standardized with respect to the area of the sub-
basin to obtain the specific quantiles q95, q50 and q1 respec-
tively [m3 s−1 km−2]. Figure 2 shows the geographical rep-
resentation of quantiles q1, q50 and q95, where it is evident
that the largest values of specific quantiles are in the South-
east of the area that coincides with the Apennine dorsal.

In addition, the climatic characteristics were calculated by
means of rainfall data from 118 rain gauges over the period
1985–2009. The average annual rainfall over the basin was
calculated using the Thiessen method. Finally, the coeffi-
cient of variation of annual precipitation was calculated and
then used to represent the temporal variability of rainfall in
the area. Figure 3 represents the mean annual precipitation
on each sub-basin and the coefficient of variation of annual
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Fig. 2. Geographical representation of specific quantiles q1 (a),
q50 (b) and q95 (c). The biggest values of quantiles are located in
the Southeast (Apenninic area), and the dimension of the region of
interest decreases from higher (q1) to lower quantiles (q95). The
black points in the figures represent the gauge stations in the study
region.
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Fig. 3. Geographical representation of the mean annual precipi-
tation MAP (a) and of the coefficient of variation CV of annual
precipitation(b). The black points represent the locations of rain
gauges in the region.

precipitation. Again, in this case the orography influences
the amount of rainfall over the basin, while the coefficient of
variation is lower in the Apennines and higher in the coastal
areas. The layout of the digital terrain model, precipitation,
variation coefficient and quantiles of the discharge (in par-
ticular the maximum) highlight how strongly the orography
influences the hydrological behaviour of the region.

Figure 4 shows the basin area against the specific quantile
of discharge q1. This scatter plot was used as a preliminary
qualitative analysis to individuate the presence of structures
in the data. Using the scatter plot, it was possible to identify
the presence of three data sets: Coastal, Apennines and Tiber
basin stations were identified. The same type of behaviour is
present in the scatter plot of the quantiles q50 and q95.
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Fig. 4. The scatter plot of basin area against specific quantile of dis-
charge q1 used as qualitative analysis for preliminary identification
of structures in the dataset(a) (semi-logarithmic representation). It
is possible to recognize three different regions. In the figure below
(b), points of the scatter plot are also identified geographically. The
geographical representation points represent the flow level stations.

These groups are formed according to the climatic condi-
tions of the area. In particular, it is possible to note how the
stations characterized by greater discharges are those in the
Apennine region also characterized by higher precipitation
depths.

4 Application and results

4.1 Selection of geomorphological variables and
correlation analysis

Correlation analysis allows for the evaluation of variables
that influence quantiles in the target area.

Table 1. Predicting variables and annotation.

A Area km2

Hmean Mean Altitude m
MAP Mean annual precipitation mm
CV Coefficient of Variation of precipitation %
FA Calcareous substrate %
FD Impervious substrate %
GA Agricultural areas %
GB Forested areas %

The choice of characteristics for the basins that were con-
sidered for this study was guided by the analysis of the inter-
actions among the flow regime, climate and physical charac-
teristics.

The geomorphological characteristics were calculated for
each basin, using GIS data to obtain the area and maximum
height of the basin. The Corine Land Cover (CLC) map,
taken from the CORINE program in Lazio and Umbria, was
used to evaluate soil use. The hydrogeological map of the
area was used to define the percentages of different litholog-
ical structures for each basin.

Table 1 shows the variables as well as the symbols used.
Table 2 shows the minimum, average and maximum values
of some geomorphoclimatic indexes. The characteristics
considered are sub-basin area A (km2); the maximum, aver-
age and minimum elevation of the basin (Hmax, Hmean, Hmin)
in meters above sea level (m a.s.l.); the value1H = Hmean
– Hmin in meters; the percentage of impervious substrate in
the basins (FD); and Mean Annual Precipitation MAP (mm)
calculated for each basin. The values in Table 2 demonstrate
the high heterogeneity and complexity of the study region.

Table 3 shows the correlation matrix estimated for all the
dependent variables with data from the study region. Table 4
shows p-values at the 0.05% level when testing the hypothe-
sis of no correlation; small p-values indicate significant cor-
relation. Table 3 shows that the variables most highly corre-
lated with specific quantiles are area, elevation of the basin
and lithological characteristics. The correlation of specific
quantiles with the area is particularly important. It can be
noted that the coefficient diminishes from minimum to max-
imum discharges. One hypothesis is that the maximum dis-
charges are influenced not only by the basin area but also by
the average rainfall, which causes high flow.

The average annual rainfall influences the maximum dis-
charges, which increase as expected when rainfall increases.
The coefficient of variation does not appear to affect the dis-
charges greatly. The lower discharges are strongly linked to
the lithological characteristics of the soil (Nikic and Radonja,
2009).

In particular, the percentage of carbonate and impervi-
ous substrate and thus the permeability characteristics of the
basins are strongly linked to minimum discharges. This
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Table 2. Minimum, average and maximum values of the geomorphological and climatic indexes for the basins in the study region.

A Hmin Hmax Hmean 1H FD MAP
(km2) (m) (m) (m) (m) (%) (mm)

Minimum 31.08 2.00 389.00 32.30 31.30 0.00 650.00
Average 400.05 106.40 1414.60 479.70 396.50 6.53 1066.15
Maximum 981.23 368.00 2200.00 2031.00 2012.00 65.26 1350.00

Table 3. Correlation matrix between discharge quantiles and geomorphological characteristics.

q1 q50 q95 A Hmean MAP CV FA FD GA GB

q1
q50 0.75
q95 –0.34 –0.23
A –0.45 –0.48 –0.49
Hmean 0.42 0.33 0.31 –0.08
MAP 0.34 0.01 0.05 0.00 0.13
CV –0.09 –0.13 0.02 0.19 0.33 0.12
FA 0.58 0.08 0.44 0.11 –0.17 –0.29 0.04
FD 0.20 0.13 –0.44 0.32 –0.11 –0.62 –0.19 0.42
GA 0.21 0.54 0.16 0.22 0.02 0.41 0.52 –0.04 0.22
GB –0.41 –0.26 0.12 –0.32 –0.29 0.12 –0.23 –0.42 0.16 0.02

Table 4. p-value matrix to test the hypothesis of no correlation (critical value equal to 0.05%).

q1 q50 q95 A Hmean MAP CV FA FD GA GB

q1
q50 0.02
q95 0.25 0.43
A 0.12 0.08 0.09
Hmean 0.13 0.25 0.26 0.79
MAP 0.19 0.98 0.94 0.99 0.66
CV 0.79 0.66 0.98 0.51 0.25 0.67
FA 0.05 0.79 0.11 0.72 0.54 0.32 0.95
FD 0.46 0.66 0.11 0.26 0.72 0.01 0.51 0.13
GA 0.45 0.05 0.56 0.45 0.98 0.13 0.06 0.95 0.43
GB 0.13 0.37 0.67 0.25 0.32 0.67 0.39 0.12 0.56 0.98

is probably because higher minimum discharges occur in
basins with groundwater flow even in summer. This would
also explain the negative correlation with the percentage of
impermeable substratum FD. Altitude, on the other hand,
mainly affects maximum discharges. In particular, it was
noted that the stations with the highest discharges are those
in the Apennines, which are characterised by higher precip-
itation depths. This can be explained by the phenomenon of
orographic rainfall.

Furthermore, Tables 3 and 4 show large p-values and thus
low correlations, probably caused by the wide variability of
the study area.

4.2 Cluster analysis through homogeneity test

Hierarchical cluster analysis is used to identify relatively
homogeneous groups of variables based on selected char-
acteristics, using Ward’s algorithm (Ward, 1963), the most
commonly used agglomerative clustering technique in the
regionalisation context. This technique produces spherical
clusters that are all approximately the same size. The aim
is to link various objects into clusters using a measure of
similarity or distance. This approach begins withn groups,
each of which contains one case. Two of the cases are then
combined to obtain a single cluster. At the next stage, ei-
ther a third case is added to the cluster or two other cases
are merged into a new cluster. Ward’s method unites the two
groups in order to minimise the error sum of squares.
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It is also necessary to test whether the data observed at
different sites in a homogeneous region arise from a com-
mon regional distribution. If the test fails, the association
with the region is reconsidered and the procedure is repeated
until the region can be considered homogeneous. The two
homogeneity tests used were developed by Hosking and Wal-
lis (1997) and estimate the degree of heterogeneity of a group
of sites in order to evaluate whether they can be considered
homogeneous. The tests are based on the L-moment ratios
(LCV, L-skewness and L-kurtosis) defined by Hosking and
Wallis (1997).

The first heterogeneity measure is calculated as:

H1 =
(V −µV )

σV

(10)

The H1 measure is based on the sample variance of L-
moment ratio LCV, which Hosking and Wallis (1997) de-
fine as the most significant parameter to individuate homo-
geneous regions and here is identified asV .

The parameterV in the H1 formulation can be calculated
as:

V =

∑
ni

(
Lcv

i
− L̄cv

)2∑
ni

(11)

whereni is the number of observations in stationi. Li
cv and

L̄cv are the LCV of stationi and the mean regional LCV.
The meanµV and standard deviationσV of the chosen

dispersion measure are estimated using this procedure: the
mean regional L-moment ratios are used to evaluate the pa-
rameters of a kappa distribution. This allows for the calcula-
tion of the repeated simulation of a homogeneous region in
which the recorded lengths of its sites are the same as those
of the observed data. In this case 500 homogeneous regions
were generated. MeanµV and standard deviationσV are then
obtained from these simulations.

The region can be assumed to be homogeneous if the H1
is sufficiently small. Hosking and Wallis (1997) suggest that
the region may be assumed to be “acceptably homogeneous”
if H1 < 1, “possibly homogenous” if 1< H1 < 2 and “defini-
tively heterogeneous” if H1 > 2.

The H1 only measures heterogeneity in the dispersion of
the samples, since it is based solely on the differences be-
tween the sample LCV in the region. Hosking and Wal-
lis (1988) also give an alternative heterogeneity measure-
ment, which we call H2. It is obtained using the same pro-
cedure as that of H1 measurement but is based on LCV and
L-skewness at the same time. H2 has similar acceptability
limits as the H1 statistic. Hosking and Wallis (1997) judge
H2 to be inferior to H1, stating that it rarely yields values
larger than 2 even for highly heterogeneous regions.

Cluster analysis was then applied, using explanatory vari-
ables with the higher correlation coefficient. First of all,
the basins’ area, altitudes and geographical coordinates were
used to cluster sites. In this way three regions were obtained,

Table 5. Results of the Hosking and Wallis (1997) homogeneity
tests for Q1, mean values Q50 and annual minima Q95 for the three
regions initially identified.

H1 H2

Tiber Q1 4.008 0.938
Tiber Q50 12.538 1.103
Tiber Q95 1.798 1.815
Coastal Q1 0.043 0.536
Coastal Q50 3.127 0.407
Coastal Q95 2.060 0.649
Appenninic Q1 0.325 0.236
Appenninic Q50 3.003 0.395
Appenninic Q95 3.313 1.178

Region1(Coastal basins)

Region3(TevereRiver, leftbankbasins)
Region2(TevereRiver, rightbankbasins)

Region4(Apenninicbasins)

N

EW

S

Region 1 (Coastal basins)

Region 2 (Tiber River, right bank basins)

Region 3 (Tiber River, left bank basins)

Region 4 (Apenninic basins)

Fig. 5. Homogeneous regions recognized in the study area. Four
regions were determined according to the geomorphological char-
acteristics of the area.

which coincided with the Apenninic, coastal and Tiber River
stations as already identified from the scatter plot. The Hosk-
ing and Wallis (1997) homogeneity tests were applied for
these regions to the Q1 values, the annual mean values and
Q95 values. The results of these tests are depicted in Table 5,
where it can be seen that the more constraining H1 statistic
values are often bigger than the threshold value that identi-
fies a heterogeneous region. A very high heterogeneity was
detected in the Tiber River region in particular. To solve this
problem, the percentage of substrate (volcanic or carbonatic)
was added to the other variables used to cluster sites and a
different configuration of the regions was hypothesized. Af-
ter this procedure the Tiber River basins were divided into
two regions: the left bank and the right bank of the river. The
other two regions coincide with those initially identified.

Figure 5 shows the four regions identified by cluster anal-
ysis, while Table 6 shows the results of the two tests for the
Tiber River basins after the division. The values for the H1
statistic for the two Tiber regions are lower than in the first
configuration; the H2 statistic is less than 2 in all cases. The
obtained results are influenced by intersite correlation due
to the nested structure of the region, although Hosking and
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Table 6. Results of the Hosking and Wallis (1997) homogeneity
tests for annual maxima Q1, mean values Q50 and annual minima
Q95 for the two Tiber River regions.

H1 H2

Tiber Carbonatic Q1 1.246 0.582
Tiber Carbonatic Q50 2.632 1.239
Tiber Carbonatic Q95 1.842 0.812
Tiber Volcanic Q1 0.124 0.423
Tiber Volcanic Q50 0.764 0.512
Tiber Volcanic Q95 1.314 0.981
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Divide
River

100 Kilometers

Fig. 6. Region 4 (Apennine basins), with gauged sites used to re-
gionalize the stochastic index flow model. The red circles high-
light the position of the stations used for the testing of the modified
stochastic index flow model.

Wallis (1988) showed that regional heterogeneity affects the
accuracy of regional flood frequency quantiles more signifi-
cantly than does intersite correlation. Hence, because of the
great heterogeneity of the region, the tests seem to have been
passed.

4.3 Results for the modified stochastic index flow model

A more thorough description is shown here for the procedure
of the modified stochastic index flow model. Only two sta-
tions (nos. 3 and 5) with an intermittent regime were avail-
able in the study region, both of which were located in the
Region 4 (Apennine basins). Figure 6 shows the Apennine
area and the two sites considered in the analysis. Seven years
of data, from 2003 to 2010, are available for sites nos. 3
and 5. Initially AF andX′ were calculated for each time
series, and several distributions were fitted to these series to
calculate the FDC using the stochastic index flow model.

First the FDC was calculated using the stochastic index
flow model, without using the theory of total probability.
Then the new model was used to calculate FDC when zero
data were present. The probability of non-zero flowpnz and
the complementpdry were calculated for both sites and then
zero data were separated from the time series.pnz was 95%
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Fig. 7. Fitted Conditional Frequency Distribution FX′nz= Pr(X′
≤

x′
| X′

6= 0) for sites n. 5(a) (logarithmic representation) and n. 3
(b). The best distributions are the Weibull distribution for site n. 5
(a) and GEV max with parameters obtained with the L-moment
method for site n. 3(b).

and 97% for sites nos. 3 and 5, respectively. These values
were calculated using the standard plotting position formula-
tion.

Subsequently, a fitting procedure was applied to the non-
zero data. Empirical distribution for AF andX′ was cal-
culated using the formulation that considers only non-zero
data. Normal distribution is the best distribution for AF non-
zero data. Figure 7 represents the fitting of distributions for
X′ non-zero data. The distributions that fit the values best
were the Weibull distribution forX′ non-zero data from sta-
tion no. 5 and GEV Max with parameters obtained using L-
moments forX′ data without zero from station no. 3.

Computation of conditional distributionFAFnz =

Pr(AF ≤ af |AF 6= 0) and fX′nz = Pr
(
X′

≤ x′
|X′

6= 0
)

with positive values of the series was then performed.
It is then possible to calculate the probability of all the

data using the modified stochastic index flow model equation
(Eq. 9).
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Fig. 8. Semi-logarithmic representation of fitted FDC (Pr(X > x))
for sites n. 5(a) and n. 3(b). The broken black line is the empirical
FDC, obtained through the Weibull plotting position, the solid grey
line is calculated using the modified stochastic index flow model
and the broken bright grey line is FDC calculated using the standard
stochastic index flow model.

Figure 8 represents the FDC for the two stations. The re-
sults are represented on a semi-logarithmic scale.

In order to evaluate the accuracy of the modified model,
the Root Mean Square Error (RMSE) and Nash-Sutcliffe
(NS) efficiency coefficient were calculated.

The formulation of RMSE is:

RMSE=

√√√√√ n∑
i=1

(
Qt

o−Qt
m

)2

n
(12)

whereQt
o is the observed discharge at the timet , andQt

m is
modelled discharge at timet .

The formulation of the Nash-Sutcliffe efficiency coeffi-
cient is:

NS= 1−

T∑
t=1

(
Qt

o−Qt
m

)
T∑

t=1

(
Qt

o−Qo
) (13)

whereQo is the mean value of the observed discharges.

Table 7. RMSE and Nash-Sutcliffe efficiency calculated for the two
stations with intermittent regime and for the standard and modified
formulation of the stochastic index flow model. The Nash-Sutcliffe
efficiency is calculated on logarithms of data.

Site RMSE Nash-Sutcliffe efficiency

SI modified SI SI modified SI
[m3 s−1] [m3 s−1]

5 6.10 5.20 0.94 0.95
3 5.70 7.00 0.96 0.94

Nash-Sutcliffe efficiencies can range from−∞ to 1. An
efficiency value of 1 (NS = 1) represents a perfect match of
the modelled discharges to the observed data. An efficiency
value of 0 (NS = 0) indicates that the model’s predictions are
as accurate as the mean of the observed data, whereas an
efficiency less than zero (NS< 0) occurs when the observed
mean is a better predictor than the model.

Results for RMSE and NS efficiency are shown in Table 7
for the stations with an intermittent regime. These efficiency
indexes are calculated for the FDC using both the stochastic
index flow model in the standard formulation and the mod-
ified model. The results from the modified stochastic index
flow model are better than those from the standard formu-
lation for the station no. 5, while they are worse for station
no. 3. The modest difference between the two curves (calcu-
lated using the standard and the modified formulations) de-
pends on the small percentage of zero values in the dataset.
Moreover, the performance of the modified stochastic index
flow model for station no. 3 is probably affected by the par-
ticular shape of the empirical curve, due to over-abstraction
of groundwater.

4.4 Regionalisation analysis

4.4.1 Choice of the best parent distribution for AF
and X′

To develop a regionalisation model, all the sites must have
the same parent distribution; it is then necessary to choose
distributions that closely fit AF andX′ data for all stations. It
is also important to choose the distributions with the fewest
parameters in order to have a parsimonious model.

The analysis was carried out in Region 4, which corre-
sponds to the Apennine region and comprises eight stations
(Fig. 6). The regionalisation approach was tested in this re-
gion involving basins with intermittent flow. Six out of the
eight sub-basins are considered to have a permanent regime.
For this reason, the stochastic index flow model was applied
to these stations with the classical implementation. This
means that for these stations the value ofpnz is 1 because
there is always flow in the river. Figure 9 shows the results of
implementing the stochastic index flow model for site no. 8.
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Fig. 9. Results of application of the stochastic index flow model
for site n. 8 (semi-logarithmic representation). The broken black
line represents the empirical FDC; the grey line represents the FDC
obtained with the stochastic index flow model.

For AF values of the different sites, several distributions
have a good fit. The best distribution for the data was the nor-
mal one. This result was expected because of the low skew-
ness of the annual flow and the central limit theorem. More-
over, this distribution has only two parameters, the meanµ

and standard deviationσ .
To evaluate the best distribution forX′ data, a method

based on the L-moment ratio diagram that represents L-
skewness versus L-kurtosis was used. Figure 10 demon-
strates that the GEV distribution gives the best fit for almost
all the stations. Observed parameters from the sites of the
region are provided in Table 8.

A regression model was used to transfer model parameters
to ungauged basins (see Sect. 4.4.2). Parameters of normal
distribution as well as scale parameterλ and shape parameter
κ of the GEV distribution are estimated by equations depen-
dent on geomorphological characteristics. It is possible to
evaluate location parameterξ of the GEV distribution using
L-moment formulation (Hosking and Wallis, 1997).λ1, the
mean value of the standardized discharge sampleX′, is equal
to unity. Location parameterξ can thus be evaluated after the
estimation ofκ andλ parameters:

λ1 = ξ +λ{1−0(1+κ)}/κ. (14)

where0(.) represents the gamma function.
The other parameter of the model is thepnz value that eval-

uates the regime type of the basin and can range from 0 for
basins with no flow in the period of measurements to 1 for
rivers with permanent regimes.

4.4.2 Regression models

Stepwise regression analysis was performed for all stations
in the region. For this type of statistical regression model,
the order of entry of the predictor variables is based on an
F-test.
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Fig. 10. L-moment ratio diagram of L-kurtosis vs. L-skewness,
used to choose the parent distribution. Distributions in the diagram
are: Normal (NOR), Gumbel (GUM), Generalized extreme values
(GEV), Generalized logistic (GLO), Generalized Pareto (GPD),
Generalized normal (LNO), Pearson type III (PE), Weibull (WEI).

Table 8. Observed parameters for the stations of Region 4 (Apen-
nine area) used for the regionalisation approach.µ andσ are the
mean and standard deviation of the AF data;κ, λ andξ are the shape
parameter, scale parameter and location parameter of the GEV dis-
tribution of theX′ data;pnz is the percentage of time that the river
is flowing.

µ σ κ λ ξ pnz

Site 1 20.26 3.03 0.33 0.16 0.83 100.00
Site 2 6.44 1.38 0.29 0.24 0.77 100.00
Site 3 0.04 0.02 0.57 0.32 0.40 95.00
Site 4 5.73 3.89 2.25 0.16 0.07 100.00
Site 5 1.12 0.49 2.01 0.15 0.08 97.00
Site 6 8.95 1.47 0.35 0.22 0.76 100.00
Site 7 36.47 4.88 0.26 0.10 0.91 100.00
Site 8 76.94 25.39 0.51 0.29 0.58 100.00

A validation analysis, through jack-knife procedure, is
then necessary to evaluate the accuracy of the regional es-
timates. This method allows a simulation of the presence of
ungauged basins and is assessed using the procedure below
(Castellarin et al., 2004).

One of the stations of the homogeneous region was re-
moved from the sample and a new regression analysis was
carried out without it. New parameters were then calculated
for this station with the new equations; the results were used
to calculate the FDC. The procedure was then applied to all
the stations.

The stepwise procedure was then used to define regionali-
sation models to calculate the five parameters in ungauged
basins. Three kinds of models (linear, exponential and
logarithmic) were evaluated:

ϑ̂ = A0+A1ω1+A2ω2+Anωn +ϑ; (15)

www.nat-hazards-earth-syst-sci.net/11/1189/2011/ Nat. Hazards Earth Syst. Sci., 11, 1189–1203, 2011
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ϑ̂ = A0 ·ω
A1
1 ·ω

A2
2 ·ωAn

n +ϑ; (16)

ϑ̂ = A0+ ln(A1 ·ω1)+ ln(A2 ·ω2)+ ln(Anωn)+ϑ. (17)

whereϑ̂ is the perfect estimated parameter,Ai , i = 1,2,...,n

are the coefficients of the model,ωi are the explanatory vari-
ables andϑ is the residual of the models.

The regression models identified for the five parameters of
the modified stochastic index flow model are:

µ = A0 ·

(
AA1

)
·

(
FA2

A

)
; (18)

σ = A3 ·

(
AA4

)
; (19)

κ = A5 ·

(
FD

A6
)
·

(
HA7

)
; (20)

λ = A8 ·

(
AA9

)
; (21)

pnz = A10·

(
FD

A11
)
·

(
AA12

)
. (22)

The two parameters of the AF data depend on the area of
basin A, while parameters of theX′ data andpnz also de-
pend on the percentage of pervious substrate FD and on the
percentage of calcareous substrate FA .

Figure 11 shows the scatter plots of parameters observed
versus the parameters predicted, which were calculated from
all sites using the jack-knife procedure. It can be seen that
the parameters estimated using the jack-knife procedure are
more scattered than those obtained with general regression;
however, they are not so different as to imply that the models
cannot be used.

4.4.3 Results of regionalisation

The flow duration curves calculated using parameters ob-
tained through jack-knife validation were then compared
with empirical FDC in order to evaluate the accuracy of the
model.

To evaluate the performance of the model, the following
indicator was considered (Castellarin et al., 2004):

εs,j =
q̂s,j −qs,j

qs,j
·100 (23)

whereqs,j and q̂s,j indicate the daily streamflow, empirical
and estimated through regionalisation, associated with dura-
tion j for stations. From these values it is possible to obtain
the mean relative error̄εs and its standard deviationσε,s for a
station as:

ε̄s=
1

N ′
·

N ′∑
j=1

εs,j (24)

σε,s=

√√√√ 1

N ′
·

N ′∑
j=1

(
εs,j − ε̄s

)2 (25)
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Fig. 11. Scatter plot of observed parameters vs. predicted parame-
ters of the stochastic index flow model. Graphs(a) and(b) represent
µ andσ parameters of the normal distribution. Graphs(c) and(d)
representκ andλ parameters of the GEV distribution, and Graph
(e) is the scatter plot of thepnz values (in probability form).

whereN ′ represents the number of durations that are consid-
ered to calculate mean and standard deviation.

In addition, the average ofN values of Eq. (24),̄ε, and of
Eq. (25),σε, with N corresponding to the number of sites,
gives an indication of the performance of the model.

It is also possible to graphically represent the mean and
median of the distribution of theN relative errorsεi,j and the
100(α/2) % and 100[1−(α/2)] % percentiles, by identifying
the interval about the median containing the 100(1−α) %
of theN relative errors, against durationsj , to evaluate the
uncertainty of the regional FDC for all durations.

The mean relative error for a given durationj can be cal-
culated as:

ε̄j =
1

N

N∑
i=1

εj,i (26)
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Fig. 12. Semi-logarithmic representation of empirical and jack-
knife FDC for site n. 5 (intermittent regime)(a) and for site n. 1
(permanent regime)(b).

Another performance indexEs that can be used is the Nash-
Sutcliffe efficiency method, calculated for each station as:

Es= 1−

N ′∑
j=1

(
q̂s,j −qs,j

)2

N ′∑
j=1

(
qs,j − q̄s

)2
(27)

whereq̂s,j is the estimated value for each durationj and site
s, qs,j is the empirical value for each durationj and site s
andq̄s is the mean value. The value of this index can range
between 1 and−∞.

The Es values are used to calculate three indexes of the
effectiveness of the model:

– P1 is defined as the percentage of cases overN stations
in whichEs> 0.95;

– P2 is defined as the percentage of cases overN stations
in which 0.50< Es< 0.95;

– P3 is defined as the percentage of cases overNstations
in whichEs< 0.5.
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Fig. 13. Representation of mean (solid black line), median (solid
grey line) and 10% and 90% percentiles (broken grey and black
lines) of relative error for different durations.

Table 9. Indexes of reliability calculated on FDC obtained from the
regionalisation model.

ε̄s [%] 0.96
σε [%] 3.68
P1 [%] 0.54
P2 [%] 0.18
P3 [%] 0.27

Figure 12 shows FDC results for two explanatory sites. Ta-
ble 9 shows the results of the average relative error and the
standard deviation of relative error for the region and the
Nash-Sutcliffe efficiency index. Figure 13, on the other hand,
is a graphic representation of mean, median and 10% and
90% percentiles of relative errors.

The relative error graph shows that the worst results are
produced for shorter durations, but the error decreases; for
durations greater than 20%, it is lower than 1%. The median
value is less affected by the anomalous values and is always
under 1%, very near 0%. It is particularly important to note
that the relative error calculated for the higher percentage of
durations, which coincides with the lower part of the FDC, is
very low. The efficiency results are quite good: in fact, more
than 50% of the sample is very well fitted, and only 27% fits
poorly.

5 Summary and conclusions

The principal aim of this paper is to create a method for cal-
culating FDC in the presence of zero data caused by zero
flow in basins with intermittent regime, where environmen-
tal problems caused by wastewater are critical.

The model represents an improvement and a more general
representation of the stochastic index flow model developed
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by Castellarin et al. (2004), in that it utilizes the theorem
of total probability. This is used to calculate the probabil-
ity of all data Pr(X ≤ x), while the stochastic index flow
model is used to calculate the conditional distribution Pr(X ≤

x |X 6=0).
The method is introduced in a context of regionalisation;

consequently, a procedure to transfer this model has been
proposed. The starting point is the definition of homoge-
neous regions in the study area using cluster analysis and
geomorphological variables as explanatory variables. Multi-
ple regression analysis then brought about the definition of
certain equations needed to transfer hydrological informa-
tion to ungauged basins. At the end, an evaluation through
jack-knife validation was performed to simulate the use of
the model in the case of ungauged basins.

The definition of homogeneous regions was applied to
basins in Central Italy and the modified stochastic index flow
model was tested in a homogeneous region involving basins
with intermittent flow.

Moreover, from the preliminary analysis of the discharge,
four groups of nearby stations were identified. The factors
with the most influence on the similarity of the data are the
average altitude of the basin, the climate, the proximity of
the observed stations to the coastline and the type of sub-
strate. Cluster analysis using these geomorphological char-
acteristics was then applied, and four corresponding regions
were found according to the climatic condition of the area.
The preliminary analysis showed a high heterogeneity in the
area, caused by the orography that influences the climate and
by the different types of substrate.

The results of the application of the five-parameter model
show that it can be used to represent FDC on rivers with
zero flow. In fact, the application of the modified model
has produced a better approximation of FDC for one of the
two stations analysed. Although a worse result is provided
for the other one, this is probably caused by over-abstraction
of groundwater. Furthermore, the little difference between
the two models is due to the small percentage of zero data.
Surely an application to a larger number of basins, character-
ized by a significant number of zero values, would be neces-
sary to better evaluate the performance of this technique.

The regionalisation of the model and the jack-knife valida-
tion also provided good results. The implementation of the
regionalisation model shows that the approach used based
on the regression relationships and identified through step-
wise regression relationships, can be adopted in different
geographical areas by simply changing the explicative vari-
ables. It is important to underline that both the regionalisa-
tion approach and the validation were applied to a modest
sample, since there was only one region in the study area
with intermittent gauging stations. Only a few stations were
thus used, of which only two had zero flow. Hence, further
studies are necessary to test the model’s applicability in re-
gions with more stations with zero flow. Furthermore, the
nested structure of the region influences the results of both

the homogeneity tests and the regression models. Therefore,
further work should develop a procedure to regionalise the
model in regions characterized by nested structures and cre-
ate a model to compute annual-based FDC in intermittent
rivers.
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