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Abstract. Annual maximum (AM) time series are incom-
plete (i.e., censored) when no events are included above the
assumed censoring threshold (i.e., magnitude of complete-
ness). We introduce a distrtibutional hypothesis test for left-
censored Gumbel observations based on the probability plot
correlation coefficient (PPCC). Critical values of the PPCC
hypothesis test statistic are computed from Monte-Carlo sim-
ulations and are a function of sample size, censoring level,
and significance level. When applied to a global catalog
of earthquake observations, the left-censored Gumbel PPCC
tests are unable to reject the Gumbel hypothesis for 45 of 46
seismic regions. We apply four different field significance
tests for combining individual tests into a collective hypoth-
esis test. None of the field significance tests are able to reject
the global hypothesis that AM earthquake magnitudes arise
from a Gumbel distribution. Because the field significance
levels are not conclusive, we also compute the likelihood that
these field significance tests are unable to reject the Gumbel
model when the samples arise from a more complex distri-
butional alternative. A power study documents that the cen-
sored Gumbel PPCC test is unable to reject some important
and viable Generalized Extreme Value (GEV) alternatives.
Thus, we cannot rule out the possibility that the global AM
earthquake time series could arise from a GEV distribution
with a finite upper bound, also known as a reverse Weibull
distribution. Our power study also indicates that the binomial
and uniform field significance tests are substantially more
powerful than the more commonly used Bonferonni and false
discovery rate multiple comparison procedures.

Correspondence to:E. M. Thompson
(eric.thompson@tufts.edu)

1 Introduction

A wide variety of hypothesis tests are available for evalu-
ating distributional alternatives, including the Kolmogorov-
Smirnov and the Chi-square tests. Research has shown that
the probability plot correlation coefficient (PPCC) hypothe-
sis test is more powerful (power is the complement of the
false negative rate) than either of these tests for a number of
distributional alternatives (Stedinger et al., 1993; Chowdhury
et al., 1991; Heo et al., 2008). For example, the PPCC test of
normality compared favorably with seven other commonly
used hypothesis tests of normality on the basis of empirical
power studies performed by Filliben (1975) and Looney and
Gulledge (1985). Subsequently, the PPCC test has been ex-
tended to many other distributions.

The PPCC test is based on a probability plot, which leads
to two advantageous properties: (1) it is easily extended
to any probability distribution with a known quantile func-
tion (the inverse of the cumulative distribution function), and
(2) interpretation of results is intuitive because the test is
based on a widely used graphical aid. Thus, the PPCC test
is often combined with a graphical display of goodness-of-fit
using a probability plot. PPCC test statistics are now avail-
able in the form of regression equations for numerous distri-
butions (Heo et al., 2008) and are widely used in the field of
statistics, as evidenced by its inclusion in most standard sta-
tistical computing packages such as MINITAB, ChemStat,
and S-PLUS (Millard and Neerchal, 2001).

A censored observation is an observation in which the ex-
act value is unknown. Although many types of censoring
are possible, this paper is concerned with left-censoring, in
which all the censored observations are below a detection
threshold. Thus, we know that the censored observations are
below the threshold, but we do now know their exact values.
Censored observations are additionally categorized as either
type I censoring, where the measurement threshold is fixed
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and the number of censored data points varies, or as type II
censoring, where the number of censored data points is fixed
and the implicit threshold varies (David and Nagaraja, 2003).
The purpose of this study is to extend the Gumbel PPCC hy-
pothesis test developed by Vogel (1986) and Heo et al. (2008)
for the case of type I left-censored observations.

Since an annual maximum (AM) series of earthquake
magnitudes is an example of an AM series that is usually
censored (censoring threshold is the magnitude of complete-
ness), we apply the new hypothesis test to a global earth-
quake catalog. In environmental statistics, research on cen-
soring has concentrated on comparisons of various estima-
tors of the mean, standard deviation, median, and other statis-
tics of censored data sets. Helsel and Hirsch (2002) and
Berthouex and Brown (1994) summarized estimation meth-
ods for use with left censored data. Little attention has been
given to the development of distributional hypothesis tests
for censored observations.

One important application of the censored Gumbel hy-
pothesis test is regional frequency analysis of earthquake
magnitudes. Extreme value theory (Gumbel, 1958) contin-
ues to be applied to the AM series of earthquake records to
assess seismic hazard (e.g., Burton et al., 2004;Öztürk et
al., 2008; Shanker et al., 2007). Burton et al. (2004) discuss
the difficulties that arise when applying the AM series ap-
proach to earthquake catalogs. They refer to censored years
as “dummy observations” and suggest that the sampling in-
terval be adjusted to minimize these occurrences. Adjusting
the sampling interval is reasonable for the series of earth-
quake maxima because earthquake records do not exhibit a
strong seasonal dependence. However, adjusting the sam-
pling interval does not always completely remove censored
values.

The most famous earthquake frequency model is the
Gutenberg-Richter (Gutenberg and Richter, 1954) model of
earthquake magnitudes. It is equivalent to an exponential
probability distribution function (PDF) for the peaks over
threshold (POT) series of earthquake magnitudes (Kijko and
Graham, 1998; Utsu, 1999). The POT series consists of ob-
servations above a threshold, termed the “magnitude of com-
pleteness” (mc). As this term implies, the POT series is
assumed to include all occurrences above a specific thresh-
old. Stedinger et al. (1993) and others have shown that a
Gutenberg-Richter (i.e., exponential) model of a POT series
is equivalent to a Gumbel model of the corresponding AM se-
ries of earthquake magnitudes, assuming a Poisson distribu-
tion of earthquake arrival times. See Thompson et al. (2007)
for further discussion of the relationship between probability
distributions of AM and POT series of earthquake magni-
tudes.

One advantage of the POT series over the AM series is
that the number of samples in the POT series is always larger
than for the AM series, often by a substantial margin. How-
ever, an important advantage of the AM series over the POT
series is that the assumption of independence of the obser-

vations is more reasonable for the AM series than the POT
series. Serial correlation or persistence of the POT series is
expected for many natural processes, including earthquakes
and such persistence leads to violation of the single most
important assumption of such frequency analysis: indepen-
dence of observations. We are not advocating the use of the
AM series over the POT series for estimation of probabili-
ties of exceedance or return periods. However, we hope that
researchers and practitioners will consider the wealth of re-
search and discussions on this subject published in the field
of hydrology, which has led to use of the AM series for es-
timation of hydrologic design events (see Stedinger et al.,
1993, Sect. 18.6). Additional research, analogous to the type
of research performed in the field of hydrology, is needed
in the field of earthquake engineering to determine whether
an AM or POT type of analysis is preferred in a particular
situation.

2 Type I left censored annual maximum observations

When a dataset is missing observations above or below a
threshold, such data are said to be “censored”. Left censoring
arises when some fraction of a dataset are below the detec-
tion limit of the available sensing equipment. Left-censored
environmental data typically follow type I censoring because
the censoring threshold is fixed by the measurement tech-
nology. Values for data below a single measurement thresh-
old are generally reported as “less than the detection limit”,
and data sets containing such points are referred to as type
I left singly censored data. This study concentrates on type
I left censoring, the type of censoring present in AM series
of earthquake magnitudes. We also assume a single mag-
nitude of completenessmc (single censoring), though exten-
sions are possible to multiple censoring levels (see Helsel and
Hirsch, 2002). When working with censored samples, one
cannot replace the censored values with either the measure-
ment threshold or some other fixed value because research
has shown that such approaches can lead to enormous bias in
derived statistics (Helsel and Hirsch, 2002).

For seismic studies on a global scale, one encounters the
problem of widely varying methods and equipment used to
collect and process seismic data. This issue is present both
spatially, where regions with more seismic stations will pro-
vide more reliable records, and temporally, where network
sensitivity and analytical methods change over time (Rydelek
and Sacks, 1989). To avoid such observational bias, care
must be taken in determining the appropriatemc for a par-
ticular catalog of earthquakes. Initially, the value ofmc may
appear to be a trivial issue in the analysis, but if it is too small
it can severely bias estimates of the shape of the distribution.
Woessner and Wiemer (2005) showed that small errors inmc
can result in substantial bias in computed seismicity rates.
Over time,mc typically decreases as the extent and qual-
ity of seismic instrumentation improves (Wiemer and Wyss,

Nat. Hazards Earth Syst. Sci., 11, 115–126, 2011 www.nat-hazards-earth-syst-sci.net/11/115/2011/



E. M. Thompson et al.: The Gumbel hypothesis test for left censored observations 117

2000). Wiemer and Wyss (2000) proposed two methods for
determiningmc based on the assumption of self-similarity;
Woessner and Wiemer (2005) present a modification of the
method introduced by Ogata and Katsura (1993) to estimate
mc that uses a Monte Carlo approximation of the bootstrap
method to evaluate the precision of estimates ofmc.

As the number of AM observations increases, the preci-
sion of the estimates of extreme events also increases. One
attempts to minimizemc, which in turn maximizes the num-
ber of complete samples. One also strives to create the
longest possible AM series by including older data. As older
data are included, however,mc necessarily increases, which
in turn increases the number of events that are censored. The
final number of observations included in the analysis is a
function of these two competing factors.

3 Data

The AM series used in this study is the same series used by
Thompson et al. (2007) except that data before 1977 are now
excluded because we have since learned that data may not
be complete. Thompson et al. (2007) computed the moment
magnitudes from the moment tensor solutions in the global
CMT catalog with records from 1976–2005 (Ekström et al.,
2005). The data from 1977–2005 were derived from data
collected from the Global Digital Seismograph Network and
the data before 1977 were derived from the High-Gain Long-
Period network in operation at that time (Ekström and Net-
tles, 1997).

The earthquakes were classified into the 50 Flinn-Engdahl
geographic regions (Young et al., 1996), which are loosely
based on tectonic setting. Thompson et al. (2007) showed
that one could not reject the hypothesis of temporal inde-
pendence of the AM samples using this regional grouping
scheme and a 5% level test based on the lag-one serial corre-
lation coefficient. Kagan (1997) showed that a magnitude of
completeness ofmc = 5.8 is appropriate for the CMT catalog
from 1977–1995. Censoring occurred in 34 of the 50 regions.
Thus, the AM series for these regions are type I left censored
samples. Indeed, this problem is so severe that every year is
censored formc = 5.8 in Eastern South America (Region 35),
Northwestern Europe (Region 36), Northern Eurasia (Region
49), and Antarctica (Region 50). Only 16 regions are com-
plete for the entire extent of the catalog.

4 Probability plots and the probability plot correlation
coefficient

The probability plot is a widely used graphical tool for as-
sessing the goodness-of-fit of various probability distribu-
tions to data and for illustrating the cumulative distribution of
a sample. If a sample arises from a hypothesized distribution,
a probability plot of the ordered observations versus their ex-
pected values under that hypothesized distribution will be ap-

proximately linear. The PPCC is a measure of the linearity of
the probability plot and offers a quantitative goodness-of-fit
metric to accompany the graphical plot. A probability plot is
constructed as follows:

1. Rank then observationsyi = y1,...,yn from a sample
in ascending order that yields the ordered observations:
y(i) = y(1) ≤ y(2) ≤ ... ≤ y(n).

2. Estimate the non-exceedance probability associated
with each ranked observation using a suitable unbiased
plotting positionpi , which depends on the sample size
n and ranki.

3. Compute estimates of the ordered observations from the
hypothesized distribution atpi using the distribution’s
inverse cumulative distribution function (also known as
its quantile function).

4. Plot then ordered observations against their estimated
values based on the hypothesized distribution and com-
pare with the line with a slope of unity that passes
through the origin.

The above approach for constructing a probability plot is
termed a quantile-quantile (Q-Q) plot. One could also de-
velop a P-P plot of the percentiles of the observations against
their expected percentiles. Other types of probability plots
are possible, and their advantages and disadvantages have
been discussed for both complete (Wilk and Gnanadesikan,
1968) and censored (Waller and Turnbull, 1992) samples.

4.1 Probability plot for complete Gumbel samples

The type I extreme value distribution is also known as the
Gumbel distribution since Gumbel (1941, 1958) first applied
it to flood frequency analysis. Gumbel (1958) showed that if
samples of a random variable are independent and identically
distributed, then the cumulative distribution function (CDF)
of the largest observation in a random sample asymptotically
approaches the Gumbel distribution

FY (y) = p = exp

[
−exp

(
−

y −ξ

β

)]
, (1)

wherep is the non-exceedance probability associated withy,
andβ andξ are model parameters which may be estimated
from the first two ordinary product moments using

β̂ =
sy

√
6

π
(2)

ξ̂ = ȳ −γ β̂, (3)

whereγ ≈ 0.5772 is known as Euler’s constant, andȳ and
sy are estimates of the mean and standard deviation ofy,
respectively. Note that the “b-parameter” of the Gutenberg-
Richter model is related to Eq. (1) byβ = log10(e)/b, where
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Fig. 1. (a) Gumbel probability plot using a complete series ofn = 29 random Gumbel variates (Region 10) and(b) a censored Gumbel
probability plot using then = 29 Gumbel variates, withn−m = 24 uncensored observations andm = 5 left-censored values (Region 26).

e is the base of the natural logarithm. The inverse of the
Gumbel CDF in Eq. (1) is termed its quantile function

y(p) = ξ −β ln[−ln(p)]. (4)

A probability plot illustrates the ordered observationsy(i)

versus estimates of the ordered observations using the quan-
tile function in Eq. (4) with a suitable estimate ofpi . A suit-
able plotting position for the Gumbel distribution that repro-
duces the expected values of the ordered observations is the
Gringorten (1963) plotting position

pi =
i −0.44

n+0.12
. (5)

Figure 1a illustrates a Gumbel probability plot for a com-
plete sample of earthquake magnitudes, using then = 29 ob-
servations from the Southern Antilles (Region 10). The un-
censored probability plot is constructed by plotting the or-
dered observationsy(i) versus their expectationy(pi) from
the Gumbel quantile function given by Eq. (4) andpi from
Eq. (5). Qualitatively, one expects the observations to fall
near the line shown which passes through the origin and has
a slope of unity, if the sample originates from a Gumbel dis-
tribution.

4.2 Plotting positions for censored Gumbel
observations

Probability plots are a convenient tool for handling censored
datasets (see Waller and Turnbull, 1992; and Chapter 13 in
Helsel and Hirsch, 2002). Here, we describe how to construct
a probability plot for censored Gumbel samples. Consider a
type I left censored sample withm censored valuesyc

(i) =

y(1),y(2),...,y(m) followed by then−m uncensored values

yu
(i) = y(m+1),...,y(n). Adapting the Gringorten (1963) plot-

ting position in Eq. (5) gives

pc
i =

i −0.44

n+0.12
for i=1,...,m (6)

pu
i =

i −0.44

n+0.12
for i=m+1,...,n (7)

wherepc
i andpu

i correspond to the plotting positions for cen-
sored and uncensored observations, respectively.

4.3 Probability plot regression for censored Gumbel
samples

Gupta (1952), Helsel and Gilliom (1986), and Gilliom and
Helsel (1986) introduced the idea of probability plot regres-
sion (PPR) for constructing probability plots for censored
samples. The PPR method for censored observations can also
be used for estimating sample statistics because it provides
unbiased estimates of the censored observations (Helsel and
Hirsch, 2002). This approach has also been referred to as
the “regression on order statistics” approach by Shumway et
al. (2002). Helsel and Gilliom (1986), Shumway et al. (2002)
and others have shown that such an approach is competitive,
in terms of mean square error of the estimated statistics, with
a variety of alternative estimation methods for censored data,
especially for small samples.

The PPR approach fits a regression between the ordered
uncensored observations and their expected values. The re-
gression equation can then be used to estimate distributional
parameters or the missing (censored) observations. Helsel
and Gilliom (1986), Helsel and Hirsch (2002), and Shumway
et al. (2002) document that the PPR method can be expected
to perform about as well as an MLE for censored samples for
estimation of a distribution’s parameters and for estimation
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of a variety of statistics, particularly for small samples. The
PPR method yields unbiased estimates of the missing obser-
vations under the assumption that the data arise from a Gum-
bel distribution. However, this does not reproduce the vari-
ance of the original observations, for which a full Bayesian
analysis would be more accurate.

Here we extend the PPR method to left censored Gumbel
observations. The first step is to construct a probability plot
from the uncensored observations, and the second step is to
estimate the censored observations using their expected val-
ues. The probability plot for the uncensored observations is
constructed by plotting the ordered uncensored observations
yu
(i) versus their expected values using the quantile function

y(pu
i ) in Eq. (4) withpu

i given in Eq. (7).
To estimate the parametersξ andβ in Eq. (4) from the un-

censored observations, we note that the quantile function is
simply a linear model between the dependent variabley(p)

and the transformed variableη = ln[−ln(p)]. Thus, the ordi-
nary least squares (OLS) regression ofyu

(i) = a−bη provides
estimates of the Gumbel parameters for the complete sam-
ple ξ̂ = a and β̂ = b. Instead of the OLS estimates of the
Gumbel model parameters, one could also use the maximum
likelihood estimators (MLE) for the parameters of a Gumbel
distribution for the case of type I left censoring introduced
by Leese (1973). It remains an open question as to how the
Leese (1973) MLE compares with PPR for estimation of the
parameters of a Gumbel distribution under type I left censor-
ing.

Figure 1b illustrates the Gumbel PPR method for censored
datasets applied to then−m = 24 uncensored observations
of Region 26 (India – Xizand – Sichuan – Yunnan) with
m = 5 estimates of the censored observations obtained from
the PPR method. This approach yields an estimate of the
complete sample, which can then be used to estimate any de-
sired statistic.

PPR can also be used to estimate the magnitude of events
with larger average return periods than the sample sizen.
For example, one is often interested in the event that has
a 2% or 10% probability of exceedance in 50 years, which
corresponds to return periods of 2475 and 475, respectively,
assuming a Poisson process. Thus, the magnitude of the
2475- and 475-year earthquake can be estimated usingyp =

a−b ln[−ln(p)], wherep = 1−(return period)−1. The PPR
approach could also be combined with the index earthquake
method introduced by Thompson et al. (2007).

5 The probability plot correlation coefficient hypothesis
test for censored Gumbel observations

The PPCC is a goodness-of-fit measure that describes the de-
gree of linearity of the probability plot for the hypothesized
distribution. Following Vogel (1986) and others, we define
the PPCC as the Pearson product moment correlation coeffi-

Table 1. Critical values of the PPCC test statistic forλ = 0. Re-
ported values are 1000(1−r).

α

n 0.05 0.10 0.25 0.75 0.90 0.95

10 91.25 73.30 49.95 19.97 12.73 9.688
20 61.50 48.74 33.12 14.25 9.736 7.754
30 48.11 37.70 25.52 11.22 7.832 6.627
100 22.03 16.78 11.15 5.022 3.623 3.001
500 6.667 5.043 3.323 1.649 1.116 0.935
1000 3.791 2.876 1.918 0.956 0.652 0.548
5000 0.994 0.761 0.507 0.239 0.176 0.149

cient between the ordered uncensored observations and their
expectation under the hypothesized Gumbel model.

The PPCC goodness-of-fit statistic can be used as a test
statistic for hypothesis testing. Vogel (1986) provides tables
of the critical values of the PPCC for complete Gumbel sam-
ples and Heo et al. (2008) provides regression equations that
relate the critical values of the Gumbel PPCC to sample size
and significance level. Our goal is to extend those results
to left-censored Gumbel samples, where the fraction of cen-
sored data, is termed the censoring level:λ = m/n.

We use the Monte-Carlo method to generateM =

50 000 000n complete Gumbel samples with sample sizes
from n = 10 to 5000. The reason for generatingM =

50 000 000n samples is that the PPCC statistic is more sta-
ble for larger sample sizes. Thus, a smaller number of repli-
cate Monte-Carlo experiments are needed for large sample
sizes than for small sample sizes. Critical values of the
PPCC (rα) are computed from each set ofM experiments
so that theα percentile of the PPCC is the value ofr that
is exceeded 100(1−α)% of the time. Assumed values of
α include 0.01, 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95 and
0.99. We then censor each complete Gumbel sample such
that the lowest(100λ)% of the observations were removed
for λ = (0.0,0.1,...,0.8). We implement these simulations
within the open-source statistical software R (R Develop-
ment Core Team, 2010).

Tables 1 through 3 provide the critical values of the PPCC
for selected values of sample sizen, censoring levelλ, and
significance levelα. Tables 1 through 3 report values of
1000(1− r) because many of the values ofr are nearly in-
distinguishable from unity. All of the values reported in
Tables 1 through 3 have 95% confidence intervals that fall
within ±2% of the values reported in the table.

Most previous efforts to develop PPCC hypothesis tests
have reported critical values of the test statistics in tables
analogous to Tables 1 through 3. For example, Vogel and
MacMartin (1991) developed regression equations that re-
late the PPCC values ton, α, and the skew coefficient
for complete samples drawn from a Log Pearson type III
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Table 2. Critical values of the PPCC test statistic forλ = 0.3. Re-
ported values are 1000(1−r).

α

n 0.05 0.10 0.25 0.75 0.90 0.95

10 114.8 92.24 61.24 20.65 11.85 8.376
20 79.77 63.67 42.86 16.75 10.64 8.120
30 63.99 50.52 33.87 13.70 8.987 7.002
100 31.56 24.07 15.77 6.635 4.589 3.697
500 10.34 7.744 5.020 2.166 1.539 1.265
1000 6.082 4.567 2.960 1.292 0.9227 0.7618
5000 1.608 1.222 0.8123 0.3641 0.2646 0.2204

Table 3. Critical values of the PPCC test statistic forλ = 0.6. Re-
ported values are 1000(1−r).

α

n 0.05 0.10 0.25 0.75 0.90 0.95

10 151.2 121.5 73.83 16.15 6.750 3.428
20 110.3 88.72 58.83 19.85 11.46 8.172
30 89.74 71.89 48.22 17.83 10.92 8.149
100 46.86 36.32 24.00 9.786 6.553 5.176
500 16.94 12.66 8.183 3.449 2.415 1.964
1000 10.21 7.625 4.926 2.104 1.488 1.219
5000 2.833 2.148 1.411 0.6208 0.4453 0.3697

distribution. Similarly, Heo et al. (2008) developed regres-
sion based PPCC tests for complete samples from numerous
other distributions including the normal, Gumbel, Gamma,
GEV, and Weibull distributions.

We develop the following relationship between values of
r = f (n,α,λ) using multivariate regression methods:

r̂ = 1−
1

exp([A+B ln(n)]2)
, where:

A = C +Dλ

B =
1

(exp[E+Fλ])2

C = 0.5257+1.037

[
ln

(
1

1−α

)]1/6

D = −0.2930−1.815α+18.83α2
−73.42α3

+140.8α4
−129.6α5

+45.88α6

E = 0.8937·1.080α
·α0.00927

F = 0.05572−1.167α+12.67α2
−55.64α3

+117.4α4
−116.1α5

+43.34α6. (8)

wheren, α, λ are the sample size, significance level, and
censoring level. Equation (8) was developed by noting
that a linear relationship exists between the logit function
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Fig. 2. Comparison of regression (solid line) and simulated val-
ues of the censored Gumbel PPCC= r values for various values of
significance levelα, censoring levelλ, and sample sizen.

ln[1/(1−r)] and ln(n) for a given value ofλ. Figure 2 com-
pares the regression estimates (curves) with the simulated
values of the PPCC= r for selected values ofn, λ, andα.
Figure 2 documents a satisfactory fit between the regression
in Eq. (8) and the results of the Monte-Carlo experiments,
with the regression performing best as bothn andα increase.

6 Applications of censored Gumbel PPCC test to
earthquake magnitudes

Thompson et al. (2007) explored various distributional hy-
potheses for observations of AM earthquake magnitudes
in 50 seismic regions across the globe, based on the
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Flinn-Engdahl regionalization scheme (Young et al., 1996).
Based on the Gumbel PPCC test developed by Vogel (1986)
for complete samples, Thompson et al. (2007) only rejected
the Gumbel hypothesis for 3 of the 46 tested regions using
a 5% significance level. When one applies a hypothesis test
46 times, using a 5% level significance level, one expects
0.05(46)= 2.3 rejections. Since Thompson et al. (2007) ob-
tained 3 rejections, they could not reject the overall null hy-
pothesis that AM earthquake magnitudes for all regions of
the globe follow a Gumbel distribution. However, the Gum-
bel PPCC test statistic developed by Vogel (1986) and used
by Thompson et al. (2007) does not consider the impact of
censoring, so their conclusions are open to question.

The censored Gumbel hypothesis test presented in this
study overcomes this limitation. Here we replicate the Gum-
bel PPCC test performed by Thompson et al. (2007) but
also account for the important fact that no earthquakes were
observed above the assumedmc = 5.8 in many years. Ta-
ble 4 reports the record lengths of the censoredm and uncen-
soredn−m observations along with the censoring levelλ for
each of the 46 earthquake regions. Here, censoring levelsλ

range from 0 to 0.86 (note that we only analyze regions with
n−m ≥ 4) with a median of 0.12. See Sect. 2 for further
discussion of the earthquake data.

Note that Table 4 also reports the computed significance
level α̂ for each region computed from Eq. (8). The estimated
significance level̂α is the nonexceedance probability of ob-
taining the PPCC test statistic under the assumption that the
Gumbel null hypothesis is true. This value is often referred
to as the “p-value” in the context of hypothesis testing, how-
ever, we have already defined the variable “p” as the plotting
position so we use the symbolα̂ to avoid ambiguity.

Assuming a significance level of 5%, we also use Eq. (8)
to estimate the critical values of the Gumbel PPCC for each
region. Table 4 documents that the 5% critical value of the
PPCC is greater than the computed PPCC for only one region
(Region 45: Macquarie Loop). Region 45 is the only region
whereα̂ < 5%. Therefore, we could only reject the null hy-
pothesis that AM earthquake magnitudes follow a Gumbel
distribution in one of the 46 regions using a 5% significance
level. The suite of 46 individual 5% level tests in Table 4
is difficult to interpret, so in the following section we per-
formed more rigorous tests termed “field significance tests”
or “multiple comparison procedures”. These tests evaluate
the behavior of the entire ensemble of 46 independent hy-
pothesis test results into a single collective hypothesis test.

6.1 Probability plot regression for censored Gumbel
samples

Table 4 summarizes the results of a large number of indi-
vidual hypothesis tests. A set of multiple hypothesis tests
such as this is difficult to interpret because the null hypothe-
sis may be rejected by chance even if the null hypothesis is
in fact true. Put differently, the likelihood of a type I error

Table 4. Summary statistics of the global CMT catalog earthquake
data.

Region m n−m l PPCC Crit. PPCC α̂

1 0 29 0.00 0.9609 0.9525 0.0865
2 15 14 0.52 0.9791 0.9105 0.6520
3 10 19 0.34 0.9386 0.9269 0.0853
4 17 12 0.59 0.9655 0.9032 0.4222
5 0 29 0.00 0.9816 0.9525 0.4131
6 0 29 0.00 0.9772 0.9525 0.2879
7 5 24 0.17 0.9866 0.9409 0.7148
8 0 29 0.00 0.9845 0.9525 0.5242
9 14 15 0.48 0.9486 0.9140 0.1912
10 0 29 0.00 0.9872 0.9525 0.6472
11 5 24 0.17 0.9753 0.9409 0.3552
12 0 29 0.00 0.9783 0.9525 0.3151
13 0 29 0.00 0.9843 0.9525 0.5150
14 0 29 0.00 0.9730 0.9525 0.2068
15 0 29 0.00 0.9694 0.9525 0.1575
16 0 29 0.00 0.9896 0.9525 0.7679
17 14 15 0.48 0.9841 0.9140 0.7534
18 0 29 0.00 0.9847 0.9525 0.5304
19 0 29 0.00 0.9778 0.9525 0.3007
20 4 25 0.14 0.9674 0.9434 0.2021
21 2 27 0.07 0.9869 0.9481 0.6744
22 0 29 0.00 0.9719 0.9525 0.1902
23 0 29 0.00 0.9689 0.9525 0.1519
24 0 29 0.00 0.9765 0.9525 0.2715
25 16 13 0.55 0.9865 0.9069 0.8253
26 5 24 0.17 0.9880 0.9409 0.7677
27 10 19 0.34 0.9290 0.9269 0.0549
28 22 7 0.76 0.9806 0.8827 0.7561
29 6 23 0.21 0.9588 0.9383 0.1485
30 3 26 0.10 0.9854 0.9458 0.6327
31 14 15 0.48 0.9641 0.9140 0.3430
32 1 28 0.03 0.9507 0.9504 0.0510
33 0 29 0.00 0.9810 0.9525 0.3918
34 22 7 0.76 0.8960 0.8827 0.0759
37 12 17 0.41 0.9833 0.9207 0.7112
38 25 4 0.86 0.9876 0.8690 0.8868
39 20 9 0.69 0.9486 0.8913 0.2822
40 21 8 0.72 0.9604 0.8871 0.4240
41 6 23 0.21 0.9544 0.9383 0.1176
42 24 5 0.83 0.9484 0.8737 0.3449
43 1 28 0.03 0.9973 0.9504 0.9988
44 14 15 0.48 0.9797 0.9140 0.6512
45 1 28 0.03 0.8972 0.9504 0.0022
46 3 26 0.10 0.9492 0.9458 0.0610
47 21 8 0.72 0.9438 0.8871 0.2610
48 2 27 0.07 0.9741 0.9481 0.2658

for the group of tests as a whole is not equal to the likeli-
hood of a type I error chosen for each individual test. Nu-
merous multiple comparison procedures (MCP) have been
developed in the statistics literature to account for this phe-
nomenon. The most widely used approaches in the statis-
tics literature are based on the Bonferroni equality (Simes,
1986) or various modifications of that test (e.g., Rice, 1989;
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Benjamini and Hochberg, 1995). Other MCP tests have been
proposed by Livezey and Chen (1983), Douglas et al. (2000),
and Vogel and Kroll (1989). The field significance (αf) is
the collective significance of a group of individual hypoth-
esis tests. Following Ventura et al. (2004) and Vogel et
al. (2008), we use the methods of Simes (1986), Benjamini
and Hochberg (1995), Livezey and Chen (1982), and Vogel
and Kroll (1989) to evaluate the overall, or joint, significance
level associated with the group of individual tests reported in
Table 4.

Here we define the field significanceαf as the probability
that a suite ofN individual hypothesis tests will reject the
null hypothesis when it is true. It should be thought of as the
overall collective significance level of the group of hypoth-
esis tests. We describe four different MCPs below. In each,
the criterion for rejection is defined differently.

6.2 Bonferroni-type multiple comparison procedure

Suppose that we want to evaluate an ensemble ofN inde-
pendent hypothesis tests and that the probability of rejecting
any one or more of the individual hypotheses isαf , given that
the hypothesis is true. Also assume that theN individual hy-
pothesis tests are independent of one another, and that each
has type I error probabilityα. A Bonferroni type test (Simes,
1986) states that

1−αf = (1−α)N . (9)

Thus, we can compute theα required for each individual test
to achieve a chosen field significanceαf with

α = 1−
N
√

1−αf . (10)

Equation (10) is often approximated byα = αf/N . This ap-
proximation is only accurate to about 2.5% of the exact value
for αf = 0.05, however, and is not justified because of the
ease with which Eq. (10) can be computed for any value of
N .

Using αf = 5% for N = 46 tests in Table 4, Eq. (10)
leads to an individual hypothesis test significance level of
α ≈ 0.00111. Sincêα > 0.00111 for all regions, there is no
evidence to reject the Gumbel null hypothesis using a 5%
level Bonferroni-type test. The overall Gumbel null hypoth-
esis would be rejected for anαf = 0.05 level Bonferroni-type
MCP if one or more of the computed significance levels in
Table 4 were less than 0.00111.

6.3 False discovery rate multiple comparison procedure

Benjamini and Hochberg (1995) introduced an improvement
over the Bonferroni-type test that attempts to control for
what they term the false discovery rate (FDR). FDR is the
number of false rejections of the null hypothesis (see Rice,
1989). Benjamini and Hochberg (1995) also found that their
FDR procedure led to considerable gains in statistical power
over the traditional Bonferroni-type test. The traditional

Bonferroni-type test rejects the null hypothesis for all regions
i = 1,...,N if any α̂ is less than the value ofα computed
from Eq. (10). In contrast, the rejection threshold for the
FDR procedure of Benjamini and Hochberg (1995) is vari-
able. Letα̂(i) be theN values ofα̂ ranked in ascending order.
The FDR procedure rejects the null hypothesis for all regions
i = 1,...,k, wherek is the largest value ofi for which

α̂(i) ≤
i

N
αf . (11)

After ranking the computed significance levels in Table 4,
we find that Eq. (11) holds for allN regions forαf = 0.05.
Thus, we cannot reject the Gumbel null hypothesis for all 46
regions, usingαf = 5% with the FDR MCP. The null hypoth-
esis would be rejected for anαf = 0.05 level FDR MCP if
Eq. (11) was violated for one or more individual samples.

6.4 Binomial multiple comparison procedure

If each hypothesis test is independent, then each test is a
Bernoulli trial with probability α = 0.05 of rejecting the
Gumbel null hypothesis, given that the data are sampled from
a Gumbel distribution. Thus, the probability mass function
of the number of rejectionsX in a series ofN independent
tests follows a binomial distribution with parametersN and
α. It follows thatαf is a function of the number of rejections
and the binomial distribution parameters

αf = P [X ≥ x] = 1−P [X <x]

= 1−

x−1∑
k=0

N !

k!(N−k)!
αk(1−α)N−k.

(12)

Figure 3 plotsαf as a function of the number of rejections for
α = 0.01, 0.05 and 0.10 assumingN = 46. Further, Eq. (12)
givesαf = 0.906 for anα = 0.05 level test andx = 1 rejec-
tion, as reported in Table 4. The probability that these results
are not due to chance is 90.6% assuming the AM earthquake
observations are Gumbel. Note thatαf = 0.079 for x = 4
rejections, andαf = 0.026 for x = 5 rejections. Thus, we
would reject the null hypothesis for anαf = 0.05 level bino-
mial MCP withN = 46 only if five or more individual tests
were rejected.

6.5 Uniform PPCC multiple comparison procedure

The previous tests only considered the results ofN individ-
ual hypothesis tests, each with fixed significance levelα. If
each test is independent, then theN values ofα̂ in Table 4 are
random samples from a uniform distribution over the interval
[0, 1] (Casella and Berger, 1990). Thus, another MCP evalu-
ates the null hypothesis that theα̂ values in Table 4 follow a
uniform distribution.

Vogel and Kroll (1989) developed a PPCC hypothesis test
for the uniform distribution with critical values of the uni-
form PPCC reported for sample sizes in the range [10, 1000]
and for significance levels in the range [0.01, 0.99]. To test
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Fig. 3. Plot of the field significance levelαf associated withn = 46
hypothesis tests, each with an individual significance levels ofα =

0.01, 0.05 and 0.10 based on Eq. (10).

the null hypothesis that̂α follows a uniform distribution over
the interval [0, 1], we construct a uniform probability plot in
Fig. 4. If the ordered̂α valuesα̂(i) are considered indepen-
dent and are ranked in ascending order, then they follow a
beta distribution (David and Nagaraja, 2003; Loucks et al.,
1981) with expectation

E[α(i)] = ui =
i

N +1
. (13)

Note thatui is known as the Weibull plotting position and
here it provides an unbiased estimate of the expectation of
the ordered uniform random variables, analogous to the way
the Gringorten plotting position in Eq. (5) provides unbiased
estimates of the ordered values from a Gumbel distribution.

Figure 4 displays the uniform probability plot of the com-
puted significance levels,α̂(i) versus the Weibull plotting po-
sitionui . If the earthquake magnitudes follow a Gumbel dis-
tribution, then the points in Fig. 4 should be located near the
line of equality. The more linear the uniform probability plot
in Fig. 4 is, the less evidence there is for rejecting the Gum-
bel null hypothesis. The data in Table 4 giver = 0.9852.
From Table 1 in Vogel and Kroll (1989), the critical value of
the uniform PPCC test statistic at a 5% significance level is
r0.05= 0.9801. Since the computed uniform PPCC of 0.9852
is slightly greater than the critical value for a 5% level hy-
pothesis test, we fail to reject the overall Gumbel null hy-
pothesis for the 46 seismic regions at a field significance level
of αf = 5%. However, the computed PPCC only slightly ex-
ceeds the critical value. It follows that if we were to slightly
increase our overall field significance levelαf , we would re-
ject the null hypothesis, and thus our test results are by no
means conclusive.
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Fig. 4. Uniform probability plot of local significance levelsα re-
ported in Table 2. Here the uniform PPCCr = 0.9852 and the 5%
critical value isr0.05= 0.9801.

6.6 Power for the Generalized Extreme Value (GEV)
alternative

The 5% level censored Gumbel hypothesis test combined
with the various MCPs are designed so that the overall test
will only reject 5% of samples drawn from a Gumbel distri-
bution, which is termed the type I error. Since the MCP tests
in the preceding sections all fail to reject the Gumbel null
hypothesis, in this section we compute the likelihood that the
test would reject the Gumbel null hypothesis when the sam-
ples actually arise from a different distribution (termed the
type II error). The “power” of the hypothesis test is defined
as the complement of the probability of a type II error and
reflects the ability, or power, of the test to detect departures
from the null hypothesis.

The GEV distribution is a generalization of Gumbel’s type
I, II, and III distributions, introduced to hydrology by Jenk-
inson (1969) and to seismology by Makjanic (1980). It is a
more flexible (three parameter) distribution than the Gumbel
(two parameter) distribution. Importantly, the GEV can ex-
hibit upper and lower bounds depending on the value of its
shape parameterκ, which overcomes the physically unreal-
istic unboundedness of the Gumbel distribution. When the
magnitudes associated with the POT series follows a Gener-
alized Pareto distribution and the number of arrivals of earth-
quakes are assumed to follow a Poisson process, then the
AM series is GEV. The Generalized Pareto distribution has
recently been applied to earthquake POT series by Pisarenko
and Sornette (2003).
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The Gumbel distribution is a special case of the GEV dis-
tribution when the shape parameterκ = 0. For κ = 0 , the
GEV reduces to a Gumbel distribution and exhibits no up-
per bound. However, forκ > 0 the GEV distribution exhibits
an upper bound and is termed the reverse Weibull distribu-
tion (Simiu and Heckert, 1996). Thus, the reverse Weibull is
an important alternative distribution to consider since phys-
ical constraints require that earthquake magnitudes exhibit a
finite upper bound. In the following power study, we docu-
ment that a global Gumbel hypothesis test often fails to reject
samples that arise from a reverse Weibull distribution. Thus,
the reverse Weibull distribution is also a viable choice for
modeling earthquakes.

We simulate the earthquake catalog by generatingN = 46
samples withn = 29 complete record lengths from the re-
verse Weibull distribution for a given value ofκ ≥ 0. Thomp-
son et al. (2007, Eq. A31) provides the GEV quantile func-
tion in terms of the AM lower boundξ , scale parameterβ∗,
and shape parameterκ. For a fixedκ, we use the method of
moments to estimateξ andβ∗ from Eqs. (B7) and (B8) in
Thompson et al. (2007). Note that we estimate the sample
mean and sample standard deviation using the PPR method
for censored samples. We then censor these samples to match
theλ of the corresponding observation in the earthquake cat-
alog. For eachκ = 0,0.05,...,0.5 we generateM = 100 000
synthetic earthquake catalogs and computeα̂ for the cen-
sored Gumbel hypothesis test. We then apply each of the pre-
viously described MCP tests and count the number of times
the MCP rejects the null hypothesisNr . For all cases where
κ > 0, we estimate the power of the censored Gumbel hy-
pothesis test against the reverse Weibull alternative distribu-
tion, where Power= 1−(Nr/M). Figure 5 plots the estimate
of the probability of a type II error (Nr/M) of the censored
Gumbel test against reverse Weibull alternatives as a function
of κ for each MCP.

Figure 5 illustrates that the censored Gumbel PPCC hy-
pothesis test is generally unable to detect slight departures
from the Gumbel distribution but can begin to discriminate
between the GEV and Gumbel models for larger values of
κ (κ > 0.2). These results indicate that, although we cannot
reject the Gumbel model, it is possible that that the samples
arises from a reverse Weibull model with a small positive
value of the shape parameter (0< κ < 0.2).

As expected from previous research (Benjamini and
Hochberg, 1995), the FDR test exhibits slightly higher power
than the Bonferroni test. Also, the uniform test shows
slightly higher power than the binomial test for detecting de-
partures from a Gumbel PDF for the sampling characteristics
of this earthquake catalog. More importantly, the binomial
and uniform MCPs exhibit substantially higher power than
either the Bonferroni and FDR MCPs. This result is specific
to the sample sizes and distributions that we analyze in this
paper, so further investigation is warranted to determine if
these findings can be generalized.

●
● ● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ● ● ●

κκ

P
(T

yp
e 

II 
E

rr
or

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0
●
●

●

Bonferroni
FDR
Binomial
Uniform

Fig. 5. Power of a type I left censored Gumbel PPCC hypothesis test
combined with the four field significance level tests discussed in this
paper against the reverse Weibull alternative. Power is a function
of the reverse Weibull shape parameterκ > 0. As κ increases, the
distribution becomes less similar to the Gumbel distribution, so the
differences are easier to detect.

7 Summary and conclusions

Our primary goal is to present a rigorous hypothesis test for
evaluating whether or not left-censored observations arise
from a Gumbel distribution. To accomplish this, we extend
the PPCC hypothesis test for complete Gumbel samples to
left-censored observations. The censored Gumbel PPCC hy-
pothesis test can be easily extended to other types of censor-
ing, as well as other probability distributions and the tests
outlined here are applicable to any problem where type I left
censoring arises, such as in the analysis of water quality, and
other environmental data (Helsel and Hirsch, 2002).

We compute critical values for the left censored Gumbel
PPCC test statistic from Monte Carlo simulations for a va-
riety of sample sizesn, censoring levelsλ, and significance
levelsα. The results are summarized in the form of a regres-
sion equation (see Tables 1 through 3, Eq. (8), and Fig. 2).
We illustrate the application of the hypothesis test with 46
time series of AM earthquakes. Each of the 46 hypothesis
tests have significance levels greater than 0.05, except for one
region. To help interpret the results of the suite of 46 individ-
ual hypothesis tests, we employ four field significance level
hypothesis tests (termed multiple comparison procedures or
MCPs) that have been previously developed in the statisti-
cal, climate, and hydrology literature. These MCPs failed
to reject the overall hypothesis that censored AM earthquake
magnitudes arise from a Gumbel distribution using an over-
all 5% significance level. Since the results were inconclusive
a power study was performed.
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A power study documents that the various MCPs could
not detect small but reasonable departures from the null hy-
pothesis (GEV with 0< κ < 0.2). Thus, although the global
earthquake catalog is consistent with the Gumbel hypothesis,
we could not rule out the possibility that the earthquake ob-
servations arise from a reverse Weibull model (a generalized
extreme value (GEV) distribution which exhibits a finite up-
perbound). Furthermore, the power study indicates that the
binomial and uniform MCPs are substantially more power-
ful than the Bonferonni and FDR tests. These results warrant
further exploration to determine whether or not these find-
ings can be generalized beyond the special cases considered
here.
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