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Abstract. An automatic procedure is presented to retrieve
rupture parameters for large earthquakes along the Sunda arc
subduction zone. The method is based on standard array
analysis and broadband seismograms registered within 30◦–
100◦ epicentral distance. No assumptions on source mech-
anism are required. By means of semblance the coherency
of P waveforms is analysed at separate large-aperture arrays.
Waveforms are migrated to a 10◦

×10◦ wide source region to
study the spatio-temporal evolution of earthquakes at each ar-
ray. The multiplication of the semblance source maps result-
ing at each array increases resolution. Start, duration, extent,
direction, and propagation velocity are obtained and pub-
lished within 25 min after the onset of the event. First prelim-
inary results can be obtained even within 16 min. Their rapid
determination may improve the mitigation of the earthquake
and tsunami hazard. Real-time application will provide rup-
ture parameters to the GITEWS project (German Indonesian
Tsunami Early Warning System). The method is applied to
the twoM8.0 Sumatra earthquakes on 12 September 2007, to
theM7.4 Java earthquake on 2 September 2009, and to ma-
jor subduction earthquakes that have occurred along Sumatra
and Java since 2000. Obtained rupture parameters are most
robust for the largest earthquakes with magnitudesM ≥ 8.
The results indicate that almost the entire seismogenic part of
the subduction zone off the coast of Sumatra has been rup-
tured. Only the great Sumatra event in 2004 and theM7.7
Java event on 17 July 2006 could reach to or close to the sur-
face at the trench. Otherwise, the rupturing was apparently
confined to depths below 25 km. Major seismic gaps seem to
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remain off the coast of Padang and the southern tip of Suma-
tra.

1 Introduction

Earthquakes that are sufficiently small compared to the con-
sidered wavelengths of the radiated wavefield are described
as point sources. Larger earthquakes with finite extent can
be described as the superposition of point sources that rup-
ture at different stages of the event. Kinematic source pa-
rameters describe the orientation, extent, duration, and rup-
ture propagation of such earthquakes. Their knowledge is
important to assess and to mitigate societal risk in the after-
math of destructive events. They are often modelled in detail
by inversion of seismic waveforms, aftershock distribution
and geodetic observations. Results are, however, often highly
nonunique or require considerable amounts of computational
effort or time to record aftershocks (hours to days).

Seismic arrays are used to detect and locate earthquakes
and seismic structures by increasing the signal-to-noise ratio
as compared to single seismic stations (seeRost and Thomas,
2009, for an overview). Since the megathrust tsunamigenic
M9.1 Sumatra earthquake in 2004 (Krüger and Ohrnberger,
2005; Krüger and Ohrnberger, 2005; Ishii et al., 2005) array
methods have also found application to determine kinematic
parameters of large earthquakes such as rupture extent, direc-
tion, duration, and velocity (Krüger et al., 2006; Ishii et al.,
2007; Rößler et al., 2008; Zhang et al., 2008; Rößler et al.,
2009; Xu et al., 2009). Here we propose a fast and robust
method to retrieve such rupture parameters within a few min-
utes after the event using multiple seismic broadband arrays.
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The method is operational and routinely applied in near-real-
time. It was initially developed for the German-Indonesian
Tsunami Early Warning System (GITEWSRudloff et al.,
2009). Therefore, we put emphasis on the robustness as well
as on computational speed. We demonstrate results for recent
large earthquakes along the Sunda arc which are obtained
from an ongoing automatic real-time application and previ-
ous manual data processing.

1.1 Theory

Classical array beamforming assumes coherent signals but
uncorrelated noise, plane wave propagation, and equal sta-
tion timing. Waveformsx(t) may be composed of coherent
signalss(t) and uncorrelated noisen(t), x(t) = s(t)+n(t).
The beamb(t) is formed by stacking seismograms at timet

for a specific slowness vectoru which is a property of the
considered signal

b(t) = s(t)+
1

N

N∑
i=1

ni(t +r iu), (1)

with the coordinate vectorr i of station with indexi. In (1) t

is the time at a reference station or a reference point thatr i

is referred to. For uncorrelated noise beamforming increases
the signal-to-noise ratio by a factor of

√
N .

The beampowerE(t) expresses the energy of the beam
within a time window centred aroundt
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wherek is the sample index and1t is the increment of the
time within the time window. Ifu is unknown it can be de-
termined by a grid search maximisingE(t).

The plane-wave assumption will be violated with increas-
ing dimension of the array. As a consequence, slowness,u,
is not equal for all stations. However, large arrays are desired
because the spatial resolution of an array increases with aper-
ture (seeRost and Thomas, 2009, for a summary). Therefore
we account for curved wavefronts in the global Earth. That
is, the term(t + r iu) in (1) and (2) is replaced by(t0 + ti),
wheret0 is the time at any given hypothetical hypocentre and
ti is the traveltime of the considered phase from the hypocen-
tre to stationi. Travel timesti are computed using a standard
spherical Earth model such as ak135 (Kennett et al., 1995)
and corrections for ellipticity. Replacing the argument beam
power (2) takes the form

E(t0) =
1

K +1

K/2∑
k=−K/2

∣∣∣∣∣ 1

N

N∑
i=1

xi(t0+k1t + ti)

∣∣∣∣∣
2

. (3)

BeampowerE(t0) is an absolute measure of the ampli-
tudes at an array. It depends on hypocentral distance, az-
imuth as well as on magnitude and mechanism of an earth-
quake. For large earthquakes the radiated seismic energy

may even vary significantly during different parts of the rup-
ture process (e.g. start and stop of the rupture). Therefore, we
prefer to use semblance (Neiddell and Turhan Taner, 1971)
as a measure of coherency of the wavefield for rupture track-
ing. Semblance,S, is simply beampower (3) normalised by
the energy summed over all considered seismograms

S(t0) =
1

N

∑K/2
k=−K/2

∣∣∣∑N
i=1xi(t0+k1t + ti)

∣∣∣2∑K/2
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i (t0+k1t + ti)
. (4)

Due to the normalisation, 0≤ S(t) ≤ 1 and is independent
of individual signal amplitudes. For uncorrelated noiseS ≈

1/N but significantly higher for coherent signalsS (Douze
and Laster, 1979).

By Eqs. (3) and (4) seismograms are migrated to any hy-
pothetic source position and time. The semblance is non-
centrally F-distributed (Douze and Laster, 1979). Therefore,
semblance relates to probability of seismic energy being ra-
diated from a given source location and att0. Semblance re-
lates to probability viaF -statistics (Douze and Laster, 1979).
It therefore provides a probability that, seen at the given ar-
ray, seismic energy was radiated at the given source point and
time. If the considered phase was generated at the assumed
location and time, semblance will be high andS > 1/N , but
low otherwise.

The semblance calculation is easily extended from a sin-
gle source point and time to a large area or volume and many
time steps giving time-dependent semblance source maps.
For such an area or volume the traveltimesti are calculated
from any given source point to all stations. Semblances(t0)

is computed for all points. By shiftingt0 a time series of sem-
blance source maps is obtained. If an earthquake occurred
within the assumed area or volume this directly allows to
image the spatio-temporal evolution and to track the rupture
during an earthquake. In principle this method can be ap-
plied continuously to the whole Earth. Computational effort
decreases by constraining region and time. A rough hypocen-
tre estimate must be provided to define a source region. For
earthquakes in many regions hypocentres are available within
a few minutes (< 10 min) after an event initiated (GEOFON,
http://geofon.gfz-potsdam.deHanka et al., 2000).

The spatial resolution of a seismic array increases with
number of stations, array aperture and the frequency band-
width of the signal (seeRost and Thomas, 2009, for a
summary). However, as array aperture increases, the fre-
quency, above which waveforms loose coherency, decreases.
This can be attributed to increasing structural inhomogeneity,
the effect of radiation pattern and source directivity which
changes the waveforms (Aki and Richards, 2002). As a re-
sult image resolution of arrays that are too large (e.g. the full
global network) may be reduced compared to smaller arrays
(Xu et al., 2009).

The method is applied to large and very large earthquakes
which typically show dominant frequencies of the source
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spectra below 0.1 Hz forP waves. We found by manual in-
spection of theP waveforms of such events that arrays as
large as 4000 km aperture can be used.

For a single array the distance/azimuth resolution depends
mainly on aperture but depending on the actual number of
stations and the interstation distances aliasing may be a prob-
lem for a specific array configuration. The time resolution of
a single array is directly linked with its slowness resolution
and typically is smeared along the great circle arc connecting
the source and the receiver array.

The polarity of aP wave is determined by the earthquake
source mechanism and the take-off direction of the wave. Po-
larity reversals destroy coherency of waveforms and reduce
semblance if waveforms are stacked. They occur near the
nodal planes of the radiatedP waves. A single regional array
by chance may lay at or near the nodal plane of the specific
mechanism.

To overcome the above mentioned problems of single ar-
rays we use a distributed set of large aperture regional ar-
rays surrounding the hypothetical source region (compare
Fig. 1). Each array will then give an individual semblance
map. Semblance is a one sided positive function of wave-
form coherency independent of the overall polarity of the
incoming waveforms. We can therefore avoid the polarity
problem due to the in general unknown source mechanism
by summing or multiplying the semblance source maps of
the different arrays for a specific source time. Because sem-
blance can be related to likelihood we feel that multiplication
of the semblance values of different arrays is more appropri-
ate than summation. The multiplication also corresponds to
a multiplication of the transfer functions of the arrays. Ide-
ally, their central lobe should be at the same position but the
side lobes are at different positions. The multiplication leads
therefore to a more distinct central lobe (that refers to the ac-
tual source signal) and to the suppression of side lobes. Due
to heterogeneity of the Earth, the single array localisations
may deviate slightly from actual hypocentres. By multiplica-
tion this error is reduced.

Taken all facts together the combined semblance

S(t0) =

M∏
i=1

Si(t0) (5)

has increased resolution in space and time and more stability
than the single array estimates (M is the number of arrays).
The resulting combined semblance maps are related to a joint
probability that an earthquakes occurred in the area at the
givent0.

1.2 Station selection

For rapid rupture tracking of large earthquakes, semblance
analysis is applied assuming the first-arriving directP waves
originate from distances between 30◦ and 100◦. Within
this distance rangeP waves are well separated from strong

Fig. 1. Map of stations used for semblance analyis of theM7.4 Java
earthquake on 2 September 2009 (centre of the map). Stations are
located within epicentral distances of 30◦–100◦. Colours indicate
the different arrays used for data processing.

later body wave phases and surface waves. At smaller dis-
tances the wavefield is more complicated by triplications in
P due to upper-mantle discontinuities. At greater distances
P turns intoPdiff which is connected with waveforms distor-
tion and rapid amplitude decay. The restriction to teleseismic
P waves determines the minimum time needed for computa-
tion. UsingSH waves which arrive much later thanP would
significantly increase waiting time. Therefore,SH waves are
not considered for automatic near-real-time application.

We use seismograms of high quality seismic broadband
stations. All stations were manually selected and checked
upon their broadband character and data quality in the
prepraratory phase of the automatic online processing. They
are merged to six virtual large-aperture regional arrays which
are combined during processing (Fig.1).

1.3 Data processing and implementation

Broadband data are acquired continuously using SeedLink,
saved to disk, and processed automatically. Arrays are pre-
defined to optimise azimuthal coverage for earthquakes along
the Sunda arc. We associate stations to six separate arrays in
regions of Europe, around the eastern mediterenean sea, east
Asia, Alaska and eastern Russia, Africa, and Australia and
New Zealand (compare Fig.1).

We continuously receive earthquake alerts including mag-
nitude and preliminary hypocentre from GEOFON via email
and the SeisComp system. Semblance analysis is routinely
started for all events with magnitudeM ≥ 5.5. Based on the
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preliminary hypocentres, stations are selected within epicen-
tral distances of 30◦ to 100◦. A 10◦

×10◦ wide area around
the epicentre at the hypocentre depth defines the target area.
Source depth is kept constant at hypocentre depth due to lim-
ited depth resolution (teleseismicP waves leave the source
region with steep incidence angles). Data acquisition starts at
19 min and 46 s (1186 s) after source time to account for max-
imum travel times of theP waves (≈ 826 s), up to 300 s rup-
ture duration, and 60 s data latency. The data latency is the
time needed to transmit seismogram data from the recording
station to the processing computer. It varies between seconds
and sometimes minutes.

We only consider vertical component broadband seismo-
grams where theP waves are most prominent. Incoming
raw seismograms have different sampling frequencies in the
range of 20–100 Hz which need to be homogenised. For ef-
ficient semblance analysis data are downsampled to 10 Hz
and bandpass filtered between 0.01 and 4 Hz. Starting 200 s
before actual source time, semblance is calculated for the se-
lected area and for 100 time steps (t0) in intervals of 5 s. For
the separate arrays all data are processed and the semblance
source maps are computed on separate client nodes on a high-
performance computer cluster.

A master node collects the semblance source maps of the
individual arrays. They are combined by pointwise multipli-
cation (see Fig.2 andOhrnberger and Kr̈uger, 2005; Rößler
et al., 2008) as mentioned above.

1.4 Parameter extraction

The maxima of the combined semblance source maps are
considered to image the most likely position of the major
seismic energy release at a given timet0. They are used to
retrieve rupture parameters such as start, duration, length, di-
rection, and velocity. This is especially useful in the case
of unilateral rupturing but may be non-unique for bilateral
ruptures after the semblance computations are finished.

Start and duration of the rupture are determined using
a conventional sta/lta trigger applied to the time series
of the maximum semblance value over all grid points.
Sta and lta define the moving short-term and long-term
semblance averages within 15 s and 100 s, respectively.
Rupture length is calculated from the greatest distance
between two maxima within the time of rupturing. Dura-
tion and rupture length give an average rupture velocity.
The direction is approximated from mean azimuth of the
semblance maxima with respect to epicentre. The hori-
zontal rupture area is also estimated. However, accuracy
strongly depends on the actual data coverage, rupture
propagation, and source mechanism. Data processing was
developed and tested manually. Since 2008 the algorithm
has been implemented for automatic real-time applica-
tion. A summary image of the results is published in the
internet (http://www.geo.uni-potsdam.de/arbeitsgruppen/
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Fig. 2. Combination for semblance source maps by multiplication
at the onset of theM7.4 Java earthquake on 2 September 2009. As-
suming source time, semblance source maps are computed at arrays
in (a) Europe,(b) Africa, (c) East Asia,(d) eastern Mediterranean
Sea(e) Alaska, and(f) Australia, New Zealand (compare Fig.1).
Colours indicate normalised semblance.

geophysikseismologie/forschung/ruptrack/index.php) for
the largest earthquakes.

Although semblance computations are relatively time ef-
ficient, computational effort increases with the number of
available seismograms. Typically, the computation of sem-
blance source maps and rupture parameters takes about
5 min. If earthquake alerts are received before theP waves
arrive at 100◦ epicentral distance then the results are pub-
lished within about 25 min after the origin time of the earth-
quake.

2 Examples

Although rupture tracking is routinely performed for earth-
quakes worldwide we have optimised the performance to
subduction-zone earthquakes along the Sunda arc near Java
and Sumatra. Here we concentrate on the largest, most
recent earthquakes that occurred off the coast of Sumatra,
the two adjacentM8.0 Bengkulu events on September 12,
2007, 11:10 and 23:49 (Figs.3, 4) and on theM7.4 Java
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Fig. 3. Results for theM8.0 Sumatra earthquake on 12 September
2007, 11:10. Top: epicentral area with maxima (dots) and 0.9 con-
tour lines of normalised semblance source maps. Colours indicate
rupture time. Star: epicentre (GEOFON). The focal mechanism
shows the centroid moment tensor solution (Ekstr̈om and Nettles,
2009). Grey contour lines indicate slab depth (Gudmundsson and
Sambridge, 1998). Bottom: time series of maximum of semblance
maxima over all grid points (black/red line), distance (crosses) from
and azimuth (circles) to epicentre from multiplied semblance source
maps. Origin time (GEOFON) is a 200 s. Values at times outside
the interval marked in red are attributed to noise and phases foll-
wing theP waves. The red line and area: time interval when sta/lta
trigger indicates rupturing.

earthquakes on 2 September 2009 (Fig.6). The two Benkulu
events caused minor local tsunamis. The Java event is located
near the tsunami earthquake on 17 July 2006. We also sum-
marise the results for other major events of the region since
the year 2000 (Fig.7 and Table1). Their rupture parame-
ters where retrieved applying semblance analysis and similar
array configurations as in Fig.1.

The Sunda arc is a major subduction zone at which the
Indo-Australian plate is subducted underneath the Sunda
plate at a convergence rate of up to 6 cm/yr (Subarya et al.,
2006). Within this region a number of majorM > 7 earth-
quakes have occurred since the destructive megathrustM9.1
earthquake on 26 December 2004. Two other events on

99˚E 100˚E 101˚E

3˚S

2˚S

1˚S

0 40 80 120
rupture time [s]

Time [s] from start at 12−Sep−2007_23:49:01

0.000

0.081

0.162

S
em

bl
an

ce

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

D
is

ta
nc

e 
 [k

m
]

0

90

180

270

360

A
zi

m
ut

h 
 [d

eg
re

e]

25 km

50 km

Fig. 4. As in Fig. 3 but for the nearbyM8.0 earthquake on 12
September 2007, 23:49.

28 March 2005 and on 17 July 2006 caused tsunamis that
were destructive along nearby coastlines. Although most of
these very large earthquakes show dip in the direction of the
subduction there are also examples for rotated mechanisms
(Fig. 7).

Both Benkulu events are typical subduction zone thrust
earthquakes with strike being parallel to the subduction front.
The onset of the firstM8.0 event at 11:10 is well defined
by a rapid semblance increase. It is caught by the sta/lta
trigger at t0 = 195 s close to the GEOFON origin time at
t0 = 200 s (Fig.3). The onset location given by the first trig-
gered semblance maximum is located near the GEOFON epi-
centre which lies well within the 0.9 combined semblance
contour line. Combined semblance is highest near the on-
set but decreases as the rupture progresses. This decrease
may be caused by simultaneous rupture of different parts of
the fault. After the onset, semblance remains high for 125 s.
This is interpreted as the total rupture duration. The rupture
propagates over at least 200 km to the north at a velocity of
about 2 km/s. Interestingly, the centroid location (Ekstr̈om
and Nettles, 2009) is located at the centre of the rupture.
Assuming that rupturing occurs along the slab interface it
seems to reach progressively greater depth of 50–60 km. It
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Table 1. Results for selected major earthquakes along the Sunda arc since 2000. Hypocentre parameters and magnitudes are obtained from
GEOFON (∗ http://geofon.gfz-potsdam.de) or USGS (∗∗ http://earthquake.usgs.gov/eqcenter).

hypocentre latitude longitude depthMw duration length velocity direction dominant
time [◦N] [◦E] [km] [s] [km] [km/s] character

04/06/2000∗∗
−4.7 102.1 33 7.9 100 200 2 SE unilateral

24/12/2004∗∗ 3.3 95.9 30 9.1 500 1200 2.8 N unilateral
28/03/2005∗∗ 2.1 97.0 30 8.7 130 200 2 trench-parallel bilateral
17/07/2006∗∗

−9.2 107.3 34 7.7 170 150 1 E unilateral
08/08/2007∗∗

−6.1 107.7 301 7.6 < 50 stationary
12/09/2007 11:10∗ −4.6 101.3 32 8.0 120 200 2 N unilateral
12/09/2007 23:49∗ −2.6 100.7 28 8.0 110 150 2 N unilateral
02/09/2009∗ −8.0 107.3 62 7.4 < 40 stationary

is important to note that we have no indication that rupturing
occurred shallower than 25 km depth. This slab depth inter-
val coincides at the surface approximately with the trench-
parallel Mentawai fault. This poses the question whether or
not the shallower part of the subduction interface was loaded
by the event. The latter would increase the potential for an-
other shallow very large event with great tsunami risk.

The second very largeM8.0 Benkulu earthquake hap-
pened only a few hours later on 23:49 of the same day. It
originated at the northern edge of the first event and con-
tinued to propagate northwards (Fig.4). As before the on-
set is well defined by high semblance. Rupture duration and
length are 100–110 s and 160 km, respectively. The northern-
most semblance maximum is interpreted as an outlier. As be-
fore, rupturing seems to be bounded between depths of 25 to
75 km. Contour lines concentrate near and downdip from the
start and at the end of the rupture. In addition, semblance is
increased towards the end of the event att0 = 260 s following
a local minimum. This indicates relatively smooth rupturing
with only little variations in slip. The observations as well
as the extent of the rupture retrieved for both Benkulu events
are compatible with finite source modelling published by the
USGShttp://earthquake.usgs.gov/eqcenter/eqinthenews.

The M7.4 Java earthquake on 2 September 2009 seems
remarkable as it shows reverse faulting with strike perpen-
dicular to the subduction trench (Fig.6). The size and focal
depth of the event are appropriate to study some limitations
of the multiple array semblance analysis.

The German Gr̈afenberg array, located at about 100◦ epi-
central distance, has recorded high-qualityPdiff and Sdiff
phases (see Fig.5). SinglePdiff phases show seismic en-
ergy concentrated near the phase onset but coherent wave-
forms for about 60 s with clear additional onsets after about
30 s and 50 s. The stack of the 13 single traces (beam) shows
that these phases have the same or very similar slowness. In
contrast, theSdiff wavetrain is shorter and can be followed
for only 40 s with an additional coherent phase about 30 s
after the arrival ofSdiff . The different lengths of the wave-
trains indicate that the rupture duration is not longer than

40 s. Therefore, the phases at 25 s and 55 s on the vertical
and the transverse component seismograms in Fig.5 indicate
the start and the termination of the rupture. Given the depth
of the event (Table1) the depth phasespPdiff andsPdiff ar-
rive 17.5 and 24.5 s, respectively, afterPdiff . They interfere
with the ongoing wavetrain ofPdiff and the phase at 75 s on
the vertical component can be interpreted as the depth phase
of the stopping phase.sSdiff arrives 30.5 s afterSdiff but is
not clearly visible on the transverse components or interferes
with Sdiff .

Since only vertical components are used for real-time sem-
blance analysis their long duration is likely to be caused by
late structure related phases originating in the source region.
Semblance clearly increases and the event onset is triggered
at 195 s (Fig.6), 5 s before origin time (GEOFON). After the
onset, semblance remains high for 65 s where the automatic
analysis defines the event termination. The location of the
semblance maximum at onset is offset by about 0.5◦ from
the epicentre. This mislocation reduces within the following
30 s. According to the seismogram interpretation, the actual
rupture duration is about 30 s. This period appears too short
and the rupture extent too small to resolve other rupture pa-
rameter than the event onset. Thereafter, areas of high sem-
blance scatter around the epicentre and spread in western and
eastern direction. The greatest apparent extent is reached in
WNW direction, 50 s after the start of the rupture and 88 km
away from the epicentre. Such scatter is typical for bilateral
earthquakes. Here, it seems to be an artefact due to depth
phases.

The interpretation of results is generally difficult for events
of this size. From our experience smaller earthquakes (M <

7) can be detected and localised but resolution is insufficient
to resolve other rupture parameters. Tractable resolution can
be expected for shallow earthquakes withM ≥ 8 and slow
earthquakes with large rupture areas. Furthermore, rupture
parameters are best resolved for unilateral earthquakes.

We have also analysed other earthquakes of the region for
which we summarise the results (see Table1 and Fig.7). The
7.9 event on 4 June 2000, off the coast of southern Sumatra
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Fig. 5. Raw velocity seismograms at stations of the Gräfenberg
array, Germany, for theM7.4 Java earthquake on 2 September 2009.
Traces are normalised and aligned to the onsets of theP waves
(top, vertical component) and of theS waves (bottom, transverse
component). The summed trace is on the top of each seismogram
ensemble. The phases near 55 s are interpreted as the stopping phase
(Pdiff andSdiff ) defining the end of the rupture. The arrivals of the
depth phases (pPdiff andsPdiff ) related to the stopping phases are
indicated on the sum of the vertical components.

propagated unilaterally to the southwest over 200 km and
100 s at a rupture speed of 2 km/s. It is directly adjacent to the
Bengkulu earthquakes in 2007. The rupture seems to be also
bounded in the same depth range without reaching the ocean
floor. The greatM9.1 Sumatra earthquake on 26 Decem-
ber 2004, propagated northwards over 1200 km and approx-
imately 500 s at a constant velocity of about 2.8 km (Krüger
and Ohrnberger, 2005; Krüger and Ohrnberger, 2005). It
almost certainly reached the ocean floor at the trench. On
28 March 2005, theM8.7 earthquake started as a bilateral
rupture which continued further to the south. Total rupture
time and extent is 130 s and 200 km, respectively. TheM7.7
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Fig. 6. As in Fig.3 but for theM7.4 Java earthquake on 2 Septem-
ber 2009.

tsunami earthquake on 17 July 2006, propagated unilaterally
to the east after an initial phase of bilateral rupture growth.
Rupture velocity was low at only 1 km/s for about 170 s.
With a lateral extent of 150 km it could reach to the trench.
The deepM7.6 earthquake on 8 August 2007, could be well
located. Rupture duration was less than 50 s. Due to the great
depth and the vertical fault orientation the apparent rupture
area is relatively small and was not resolved.

3 Discussion

Semblance as a measure of waveform coherency is used to
evaluate beamforming and the occurrence of earthquake rup-
turing. Compared to beampower, which is often used, sem-
blance evaluates waveforms. It is less dependent on ampli-
tudes of individual traces and therefore less prone to sta-
tion dependent noise or erroneous true-amplitude recovery
of seismograms. This makes semblance more appropriate in
this application.

Unequal polarities of the considered phases at different
station prevents constructive stacking of seismograms. In
the case ofP waves, polarities depend on the actual earth-
quake source mechanisms and the direction of the wave de-
parting from the source. Evaluation of seismograms within a
global station array therefore requires the correction for po-
larity reversals or for the source mechanism which must be
determined or known a priori. Otherwise, results may be ob-
scured. The polarity corrections add extra computational ef-
fort which may prevent fast rupture tracking.
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By the combination of well-placed separate arrays instead
of one global array, such polarity correction can be avoided.
The considered stations are chosen such that polarity rever-
sals within the individual arrays are unlikely for subduction
earthquakes along wide regions of the Sunda arc (compare
Fig. 1). If such polarity reversals occur, semblance will be
low and uncorrelated at the single array. Even in this case,
rupture tracking will remain feasible by the array combina-
tion if the polarities within the remaining arrays are consis-
tent. The resolution, however, may be reduced. Therefore,
the combination of single arrays seems more robust for real-
time application than the single global array if the source
mechanism is not accounted for.

For traveltime calculations,P waves and constant depth as
given by the hypocentre estimate are assumed. Since depth
resolution is insufficient, the automatic analysis is only ap-
plied to resolve the horizontal extent of the rupture. Dur-
ing beamforming, the signals of phases that have different
slownesses than theP waves are suppressed. Depending on
source depth and epicentral distance the slowness of theP

wave are similar to thepP andsP depth phases and differ-
ential timesP −pP , P −sP may be small. Therefore, depth
phases may not be sufficiently suppressed. Furthermore, am-
plitudes ofpP andsP waves can be large compared to di-
rect P . This sometimes may give rise to locating energies

of depth phases using slowness and traveltimes ofP waves
into the source region. The resulting bias is reflected in shifts
of the occurrence time of a particular source point, less in
the location. This may lead to increased semblance values at
later times corresponding to the traveltime differences. For
deeper earthquakes the depth phases are well separated from
theP waves resulting in distinct semblance peaks. This sepa-
ration may be used to discriminate between shallow and deep
earthquakes. On the other hand, increased semblance due to
depth phases may lead to apparently longer rupture duration.
This is most important for shallow earthquake were the slow-
ness differences are smallest, for small earthquakes, and for
earthquakes with a duration similar to the traveltime differ-
ences (compare example in Fig.6). Both effects at present
require manual inspection.

Rapid rupture characterisation of shallowM ≥ 8 earth-
quakes along the Sunda arc is of prime importance for
tsunami early warning. The automatic retrieval of start time,
duration, extent, direction, and propagation velocity of the
rupture is found reliable for such events. Single semblance
maxima give a spatial resolution of about 0.5◦–1◦. The series
of maxima provides an image of the rupture that can be eval-
uated. The estimation of the rupture area depends on a cali-
bration of the shape of the semblance source maps. Results
for smaller earthquakes in the range 7≤ M < 8 strongly de-
pend on hypocentre as well as on data availability and qual-
ity. A high-quality image of the rupture was achieved for
the M7.7 Java earthquake on 17 July 2006 (Krüger et al.,
2006) by manual data processing, at that time state-of the
art. For the smallerM7.4 event on 2 September 2009, the
onset and upper estimates of the extent and the duration were
obtained. Unique event detection is often possible forM ≥ 6
earthquakes but usually fails below. The application of the
method to other regions of the world requires a different ar-
ray configuration.

The computations also improve with data availability
which is limited by the data latency of individual stations.
Owing to the goal for rapid rupture characterisation only data
latencies of up to 60 s are considered. However, seismograms
for some stations are available first at a later time. Therfore,
computations are often repeated. This generally improves the
results.

So far the automatic results are obtained and published
within about 25 min. Latest developments aim to increase
computational efficiency. After coding the algorithm as
an integrated part of the new Seiscomp3 software package
(Weber et al., 2007) rupture parameters are obtained within
22 min after the onset of the event. Preliminary parameters
with lower resolution can be achieved even within 17 min
when only stations up to 60◦ epicentral distance are consid-
ered. After final testing, results will be made online in the
near future.

Based on our results (Fig.7) we find that almost the en-
tire coastal strip to the west of Sumatra has been ruptured by
large subduction-related thrust earthquakes (M ≥ 7.5) since
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2000. Three areas that obviously form seismic gaps remain:
between the 2000 earthquake and the tip of the Sumatra fault
off the coast of southern Sumatra, off the coast of Padang
between the 2005 Nias earthquake and the 2007 Bengkulu
earthquakes, and the whole stretch between the trench and
the up-dip extent of the aforementioned earthquakes to the
south of theM9.1 Sumatra-Andaman earthquake in 2004.
The seismic gap off the coast of Padang was possibly reduced
by theM7.7 event on 30 September 2009 (GEOFON). This
raises the question for the state of the remaining slab surface
close to the trench (compare Fig.7). Brittle behaviour and
increased load of this part of the subduction would increase
the tsunami threat due to large shallow rupture.

It seems that the tsunamigenic potential of an earthquake
depends also on the location and the rupture mechanism.
Both the Sumatra-Andaman and the Java earthquakes in 2004
and 2007 could reach to or close to the trench. This proximity
to the trench and the exceptional low rupture velocity of the
Java earthquake in 2006 possibly supported the generation of
a destructive local tsunami. On the contrary, the twoM8.0
Sumatra earthquakes in September 2007 apparently ruptured
only at depths below 25 km and could not generate major
tsunamis.

4 Conclusions

We have presented a method to retrieve rupture paramters
of large earthquakes along the Sunda arc automatically in a
real-time fashion. The method is based on directP waves at
separate large-aperture seismic broadband arrays within tele-
seismic epicentral distances of 30◦ to 100◦. It evaluates the
semblance as a measure of coherency of waveforms to de-
termine the location and the evolution of earthquake ruptur-
ing. The semblance source maps resulting from individual
arrays are combined by multiplication. This increases res-
olution. Results are less dependent on source mechanisms
than for a single global array. For shallowM ≥ 8.0 events
start, duration, extent, direction, and velocity of the rupture
are determined with confidence. Results for smaller earth-
quakes depend on rupture properties, location, and data. The
retrieved rupture parameters can help to evaluate and miti-
gate the earthquake and tsunami hazard.

We have presented automatic applications of the method to
the twoM8 earthquakes on 12 September 2007, off the coast
of Sumatra and theM7.4 earthquake on 2 September 2009,
off the coast of Java. For the two Sumatra events, their start,
duration, extent, propagation direction, and velocity of the
rupture could be retrieved. They show almost trench-parallel,
northward rupturing at about 2 km s−1 that lasted more than
100 s extending up to 200 km. For the smaller Java event
only the start and an upper limit of the duration (< 40 s) was
found with confidence. Analysis of the other large (M > 7.5)
thrust earthquakes of the region show that almost the entire
subduction zone off the coast of western Sumatra has under-

gone rupturing since 2000. Seismic gaps, however remain to
the south of Nias island and at the southern tip of Sumatra
probably leaving the region at high earthquake risk. Only the
great Sumatra earthquake in 2004 and the Java earthquake
in 2007, both tsunamigenic, could reach to or close to the
trench. Comparing rupture locations and the RUM model
(Gudmundsson and Sambridge, 1998) we find that the other
events where confined to depths below 25 km.

Retrieved parameters are published and can be used to
constrain seismic and tsunami hazard along the Sunda arc.
Therefore, the application will be an intergrated part of
GITEWS (Rudloff et al., 2009). At present, the results are
available within 25 min after event onset. Future develop-
ments will reduce computation effort to less than 22 min. By
limiting the observations to 30–60◦ epicentral distance first
estimates can be provided even within 17 min.
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