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Abstract. Frequency and intensity of gust wind speeds asso-
ciated with severe mid-latitude winter storms are estimated
by applying extreme value statistics to data sets from re-
gional climate models (RCM). Maximum wind speeds re-
lated to probability are calculated with the classical peaks
over threshold method, where a statistical distribution func-
tion is fitted to the reduced sample describing the tail of the
distribution function. From different sensitivity studies it is
found that the Generalized Pareto Distribution in combina-
tion with a Maximum-Likelihood estimator provide the most
reliable and robust results.

For a reference period from 1971 to 2000, the ability of the
RCMs to realistically simulate extreme wind speeds is inves-
tigated. For this purpose, data from three RCM scenarios,
including the REMO-UBA simulations at 10 km resolution
and the so-called consortial runs performed with the CCLM
at 18 km resolution (two runs), are evaluated with observa-
tions and a pre-existing storm hazard map for Germany. It
is found that all RCMs tend to underestimate the magnitude
of the gusts in a range between 10 and 30% for a 10-year
return period. Averaged over the investigation area, the un-
derestimation is higher for CCLM compared to REMO. The
spatial distribution of the gusts, on the other hand, is well re-
produced, in particular by REMO.

1 Introduction

Severe winter storms and related destructive wind speeds
pose a significant threat to modern societies and their assets.
In Central Europe, winter storms are responsible for more
than 50% of the total economic loss due to natural hazards
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(Münchener R̈uck, 2007). Single extreme storm events with
a low probability of occurrence, such as Lothar on 26 De-
cember 1999 (Ulbrich et al., 2001; Wernli et al., 2002) or
Kyrill on 18 January 2007 (Fink et al., 2009), caused eco-
nomic losses in excess of 10 billion EUR each. Therefore,
accurate assessment of the frequency distribution of extreme
near-surface wind speeds is a fundamental prerequisite for
engineering, forestry, and risk management purposes.

In the light of global warming it is still a matter of de-
bate to what extent the frequency and/or intensity of severe
winter storms may change as a consequence of the green-
house gas (GHG) forcing conditions expected in the 21th
century (IPCC, 2007). A comprehensive review of the ac-
tual knowledge on the climatology of mid-latitude cyclones
for present and future climate conditions is given byUlbrich
et al. (2009). Several recent studies (e.g.Leckebusch et al.,
2006; Pinto et al., 2006; Rockel and Woth, 2007; Pinto et al.,
2007b) investigate the relation between the frequency and in-
tensity of cyclones or extreme winds on the basis of global
or regional climate models (GCM/RCM). They all found ev-
idence of a slight increase in the frequency of high wind
speeds over Europe, in particular at the end of the 21th cen-
tury, compared to present climate conditions. The studies
consider either changes in the number of events over a spe-
cific threshold (>Bf 8; Rockel and Woth, 2007) or in the 98th
percentiles of the distribution function (Leckebusch et al.,
2006; Pinto et al., 2007a; Fink et al., 2009). Using such com-
paratively low thresholds, severe winter storms with high re-
turn periods (RP) or – the inverse – low probabilities are not
adequately described.

Accurate assessment of the storm hazard in terms of wind
speed related to probability is based on proper statistical de-
scription of the underlying data set. Extreme value statistics
can be applied specifically to model the behaviour in the tails
of the distribution of interest. Basically, two different meth-
ods exist for statistically describing a sample of extremes.
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One is the classical generalized extreme value (GEV) dis-
tribution, which is based on annual maxima. It comprises
a family of three different probability distribution functions
(Fisher and Tippett, 1928). The other approach is the peaks
over threshold (POT) method, where all events above a cho-
sen threshold are selected for the sample (Coles, 2001; Pa-
lutikof et al., 1999). This method increases the number of
events included in the analysis and, correspondingly, reduces
statistical uncertainty (Brabson and Palutikof, 2000). Key
criteria for using the POT-method are the definition of either
a fixed threshold or a number of events constituting the sam-
ple and event independence. The latter is taken into account
by implementing a minimum time lag between two consecu-
tive storm events. Once a sample of events has been created,
the next steps are (i) identifying a statistical distribution best
fitting the data, and (ii) estimating the unknown parameters
of the distribution function. In principle, several statistical
methods are applicable to model a sample of extremes.

In this paper, statistical methods most appropriate for char-
acterizing a sample of daily maximum wind speeds are eva-
luated. First, the fits of three different cumulative distribu-
tion functions are computed: gamma distribution, exponen-
tial distribution, and generalized Pareto distribution (GPD).
Next, four different methods are applied to estimate the a
priori unknown parameters of the distribution function. The
sensitivity and robustness of the results to variable sample
sizes are evaluated. Maximum wind speeds obtained from
three different RCM realizations for a control period between
1971 and 2000 are evaluated against a pre-existing storm
hazard map and observation data. From this, specific specific
characteristics inherent in the realizations and the models are
examined.

In Part 2 (Kunz et al., 2010), relative changes in extreme
wind speeds projected for the next few decades will be quan-
tified. These studies will be based on results of five RCM
runs comprising different model setups, different realizations
of the driving GCM, and different emission scenarios.

The present paper is organized as follows: Sect.2 contains
a brief overview of the data sets used in this study. Section3
provides a short description of the different distribution func-
tions and parameter estimator methods. Section4 identifies
the methods most appropriate for describing extreme wind
speeds. Section5 provides an evaluation of the RCM simu-
lation results for past decades. Discussion and some conclu-
sions follow in Sect.6.

2 Data sets

Validation of appropriate statistical methods and estimates of
extreme wind climatology are based on the RCMs of REMO
and CCLM, which will be shortly described in the following
sections. Maximum wind speeds are examined for a con-
trol period from 1971 to 2000 (CTRL) and – for the sta-
tistical tests in Sect.4 – a projection period from 2021 to
2050 for the A1B emission scenario (A1B). For evaluation

purposes, data of a pre-existing storm hazard map, com-
plemented by synoptic stations (SYNOP) of the German
Weather Service (Deutscher Wetterdienst, DWD), are used.
As severe synoptic-scale storms in Central Europe are re-
stricted to the winter season, only data for the months be-
tween October and March are analyzed. The entire area un-
der investigation ranges from 47◦ to 55◦ N and from 5.5◦ to
15.5◦ E, covering all of Germany and parts of adjacent coun-
tries. The quantitative evaluation is conducted for Germany
because high-quality data sets are available only for this re-
gion.

2.1 ECHAM5 global climate model

The ECHAM5/MPI-OM global model (Roeckner et al.,
2003, 2006) is a coupled atmospheric-ocean model (Mars-
land et al., 2003) developed at the Max-Planck-Institute for
Meteorology (MPI-M), Hamburg (Germany). The atmo-
spheric component is the spectral model ECHAM5 run at
T63 horizontal resolution, which approximately corresponds
to a spatial resolution of 1.87◦ (∼200 km). The calcula-
tions carried out at the MPI-M were computed with historical
GHG and aerosol concentrations for the period 1860–2000.
The initial conditions of the three realizations are different
states of the 500-year pre-industrial control run based on con-
stant GHG concentrations of the year 1860. We used daily
maximum near-surface (10 m) wind speeds from the first re-
alization to examine the sensitivity of the statistical distribu-
tion function to variable sample sizes.

2.2 Regional Model (REMO)

The REMO is a hydrostatic RCM based on theEuropamod-
ell, the former operational weather prediction model of DWD
(Majewski, 1991). Further development and various applica-
tions were carried out at the MPI-M (Jacob, 2001).

The REMO experiments used in this study (Jacob,
2005a,b) were commissioned by the German Federal Envi-
ronment Agency (UBA); they cover Germany, Austria and
Switzerland (Jacob et al., 2008) with a very high spatial reso-
lution of 0.088◦ (∼10 km). In these model runs, REMO em-
ploys the physical parameterization schemes of ECHAM4,
not those of theEuropamodell. In the vertical dimension,
a hybrid coordinate system is used with terrain-following
model levels. The horizontal grid is a rotated Arakawa C-
grid where all variables except the wind velocity refer to
the centre of a grid box. The model runs are driven by
initial and boundary condition of ECHAM5/MPI-OM ap-
plying a double nesting method with an intermediate step
of 0.44◦ (∼50 km) resolution. Daily maximum gust speeds
were examined, which are parameterized according to the
Europamodellin terms of turbulent kinetic energy (TKE)
in the atmospheric boundary layer (Majewski, 1991). An
overview of the RCMs and their setups is presented in Ta-
ble1.
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Table 1. Technical description of the REMO and CCLM regional
climate models from which results are used in this study.

REMO CCLM1/2

Experiment UBA Simulations Consortial runs

Global forcing ECHAM5 T63 ECHAM5 T63
Run 1 Runs 1 + 2

Resolution 0.088◦ 0.167◦

∼10 km ∼18 km

Grid points 109×121 257×271

Vertical layers 27 32

2.3 COSMO Climate Local Model (CCLM)

The Local Model in climate mode, CCLM, is a non-
hydrostatic RCM developed from the operational weather
forecasting model of DWD. Several model runs with a spatial
resolution of 0.167◦ (∼18 km) were performed by the Model
& Data Group at MPI-M (Hollweg et al., 2008). These so-
called consortial runs (Lautenschlager et al., 2009a,b) – here-
inafter called CCLM1 and CCLM2 – are based on the first
two realizations of ECHAM5/MPI-OM (see Table1 for an
overview of the model). Terrain-following coordinates on a
rotated Arakawa C-grid are used. The 10 m maximum gusts
are determined as the peak levels of both turbulent and con-
vective gusts (Schulz and Heise, 2003). Turbulent gusts are
derived from the turbulent state in the atmospheric bound-
ary layer by way of the drag coefficient for momentum and
absolute wind speed at the lowest model level. Convective
gusts, on the other hand, are parameterized in terms of the
wind speed transported from higher to lower levels by the
downdraft according to the convection scheme ofTiedtke
(1989). In the output of the consortial runs, however, con-
vective gusts are restricted to a maximum value of 30 m s−1.
As it is not known whether a value of 30 m s−1 is related to
convective or turbulent gusts, direct use of the model gusts
is not possible. Therefore, gusts were parameterized subse-
quently by multiplying mean wind speeds with constant em-
pirical gust factors,f , which depend solely on the roughness
length, z0, of the terrain. The same approach was applied
successfully in the storm hazard map presented in the next
section (Hofherr and Kunz, 2010). The gust factors do not
consider the actual weather situation, in particular the condi-
tions within the boundary layer. Especially in case of strong
convective gusts, this may lead to an underestimation of ac-
tual gust speeds near the surface. Daily maximum gusts are
computed for each grid point by

V ′
max= f ·

√
ū2+ v̄2, (1)

where ū and v̄ are the horizontal components of the daily
maximum mean wind speed. The gust factors,f , were de-

Table 2. Empirical gust factors as a function of roughness length,
z0, with the corresponding gust factor,f , and the number of grid
points (GP) in each category.

Category z0 [m] Gust factorf Number of GP

1 ≤0.09 1.364 869
2 ≤0.2 1.51 631
3 ≤0.3 1.649 654
4 ≤0.6 1.71 1176
5 ≤1.0 1.8 348
6 ≥1.0 1.875 522∑

1844

rived originally from the ratio between turbulent fluctuations
(averaged over a 3-s period) and mean wind speed (averaged
over a 10-min period) for different vegetation characteristics
according to the studies ofWieringa(1986). They are listed
in Table 2 together with the number of grid points within
each category.

2.4 Synoptic station data (SYNOP)

Wind measurements at manned and automatic weather sta-
tions of DWD were used for quantitative evaluation of the
RCM results (see Fig.1 for station locations). These data
comprise hourly means and daily maximum gust speeds.
Since wind measurements over a longer time period may
be affected by changes in the environment, relocations or
changes in instrumentation, the data were checked thor-
oughly. Where possible, inhomogeneities in the time series
were corrected (Hofherr and Kunz, 2010). Measurement er-
rors as well as local gusts related to thunderstorms were fil-
tered out by comparing daily maximum wind speeds with
both hourly observations from the same station and time se-
ries from neighbouring stations. Only stations in continuous
operation over at least 20 years were used, yielding a total
number of 150 stations. As can be seen in Fig.1, the station
sites are spread more or less evenly over the whole domain.
The relative frequency distribution in terms of station height
is similar to those of CSHM and the RCMs.

2.5 Storm hazard map CSHM

To close the gap between point observations (SYNOP) and
area-covering RCM data, wind fields from a pre-existing
storm hazard map (hereinafter referred to as CSHM) of the
Center for Disaster Management and Risk Reduction Tech-
nology (CEDIM) were used additionally (Heneka et al.,
2006; Hofherr and Kunz, 2010). The CSHM is based on sim-
ulated wind fields of the annual most severe storms between
1971 and 2000 using the numerical Karlsruhe Atmospheric
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Fig. 1. Orography of Germany resolved at 1 km×1 km with lo-
cations of surface stations used for evaluation of the RCM results
(white dots; black dots used in the comparison of Fig.7).

Mesoscale Model (KAMM;Adrian, 1987). The model, ini-
tialized by ERA-40 re-analysis data (Simmons and Gibson,
2000), provides mean wind speed in a very high spatial res-
olution of 1 km×1 km. The very high resolution allows vari-
ous orographic structures relevant for the near-surface winds
to be resolved. A nudging technique, i.e. a weak relax-
ation towards an atmospheric reference state, was employed
to adjust the simulated wind fields to the observations (fac-
tors limited to a range between 0.7 and 1.3). As KAMM
has no internal parameterization scheme for the gusts, they
were determined by multiplying mean wind speeds with em-
pirical gust factors depending on land use only (same as for
CCLM). Finally, a statistical Gumbel distribution function
was fitted to the wind data modelled at each grid point to
obtain extreme gust speeds for specific return periods. The
CSHM wind fields are quantitatively as well as qualitatively
in good agreement to the observations. Only highest wind
speeds, especially over the mountains, are somewhat under-
estimated.

3 Statistical methods

The basis of statistical modelling are time series for each grid
point, from which the strongest events are selected. To obtain
a sample of statistically independent events, a minimum time
lag of three days between two storms is considered (Palutikof
et al., 1999). After creation of a sample, the next steps are
(i) identification of a probability distribution function (PDF)
best fitting the data, and (ii) estimate of the unknown pa-
rameters. Several statistical methods, summarized below, are
applicable to a sample of extremes. These methods rely on
stationary samples which are not influenced by any trend. A
check of the REMO data yielded only insignificant trends
within the CTRL period. In case of non-stationary samples,
methods like non-stationary GPD models should be used to
account for this (see, e.g., the review ofKhaliq et al., 2006).

3.1 Distribution functions

3.1.1 Generalized pareto distribution

The GPD describes the behaviour of extreme values above
a defined threshold,ζ (Hosking and Wallis, 1987; Palutikof
et al., 1999). To avoid that a different number of events enter
the samples,ζ is not used as a fixed parameter here but ad-
justed at each grid point, thus ensuring uniform sample sizes.
The cumulative distribution function (CDF) of the GPD is
defined by

F(x) = 1−

[
1−

k

α
(x −ζ )

]1/k

, (2)

wherex is the random variable. The shape parameter,k, indi-
cates the width, the scale parameter,α, the slope of the CDF.
If k=0, the GPD is reduced to the exponential distribution,

F(x) = 1−exp

[
−

(x −ζ )

α

]
. (3)

With the crossing rate,λ, as the expected number of peaks
aboveζ , the wind speed as a function of the return period,T ,
is

XT = ζ +
α

k

[
1−(λT )−k

]
k 6= 0 (4)

XT = ζ +α ln (λT ) k = 0 (5)

These functions are called the hazard relations, also defining
the hazard curves. Fork>0, the function converges asymp-
totically towards an upper bound. However, it is infinity if
k≤0. This implies an unbounded increase in wind speed for
increasing return periods, which makes no sense physically.
The advantage of the exponential distribution (Eq.3) is that
a negative value ofk is impossible, ask=0 by definition.
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3.1.2 Gamma distribution

The gamma distribution is a two-parameter family of contin-
uous CDFs, which is defined by

F(x) =
1

αk0(k)

∫ x

0
xα−1e

−x
α dx, (6)

wherek andα again are the shape and scale parameters, re-
spectively (Wilks, 1995). The Gamma function,0(k), is an
analytic function that extends the concept of factorial to the
complex numbers. The CDF of the gamma distribution takes
on a wide variety of shapes as a function ofk. It comprises
the exponential distribution (fork=1), the chi-square distri-
bution (for k=2) or the Gaussian distribution (fork→∞).
The wide range of possible shapes is the reason why also the
gamma distribution was tested in addition to the widely used
GPD to statistically describe extreme wind speeds.

3.2 Parameter estimation

Once an appropriate CDF (or PDF) has been adopted, the
next step is estimating the unknown parameters,k and α.
Several methods are available, all of them basically appli-
cable to any CDF. According toHosking and Wallis(1987),
for example, the method of moments (MOM) exhibits the
highest efficiency in estimating the parameters of the GPD
whenk≈0, whereas probability weighted moments (PWM)
is more appropriate whenk≈−0.2. For large sample sizes,
those authors judged the maximum-likelihood (ML) method
to be the best choice whenk>0. Kharin and Zwiers(2000)
quantified extreme wind speeds from a GCM by using the
GEV and the method of L-moments (LM) to estimate the un-
known parameters. For a data set of observed extreme gust
speeds,Brabson and Palutikof(2000) examined the sensitiv-
ities of the GEV and the GPD by using ML and probability
weighted moments (PWM). In a recent study,Della-Marta
et al.(2009) applied the GPD in combination with an ML es-
timator to a sample of modelled extreme wind speeds from
ERA-40 re-analysis.

3.2.1 Method of moments

The method of moments (MOM) is a parameter estimation
technique based on matching the sample moments to the
corresponding distribution moments (Hosking and Wallis,
1987). The unknown parameters,k andα, are determined by

k =
1

2

(
X

2

s2
−1

)
(7)

α =
1

2
X

(
X

2

s2
+1

)
, (8)

whereX is the mean ands2 is the variance of the sample.

3.2.2 Method of maximum-likelihood

The method of ML is a technique identifying the most likely
values ofk and α for a given sample (Wilks, 1995). The
method adopts parameter values by maximizing a likelihood
function,

L(α,k) =

∏
f (α,k,xi) (9)

with f as the PDF. Usually,L is expressed by the log-
likelihood function. Taking the first derivatives of Eq. (9),

∂ log[L(α,k)]

∂ (α,k)
= 0, (10)

with respect to the parameters of any PDF yields two equa-
tions fork andα (Hosking and Wallis, 1987). If necessary,
the second derivative can be used to determine the sign of
the solution. Whenk<0.5, the estimators have their familiar
properties of consistency, asymptotic normality, and asymp-
totic efficiency (Hosking and Wallis, 1987). From the asymp-
totic covariance matrix of the ML estimator, uncertainties in
the parameter estimates can be derived.

3.2.3 Method of probability weighted moments

The PWM method calculates the estimators by comparing
the first two moments of the population with those of the
sample. Unbiased estimators ofk andα are given by (Hosk-
ing and Wallis, 1987)

k =
b0

b0−2b1
−2 (11)

α =
2b0b1

b0−2b1
, (12)

where the zeroth moment,b0, is the mean of the sample (X),
and the first moment,b1, is given by

b1 =

n−1∑
j=1

(n−j)Xj

n(n−1)
(13)

with n as the sample size andXj as the members of the
sample. According toAbild et al. (1992) and Palutikof
et al.(1999) the estimates (11-12) are valid within the range
−0.5<k<+0.5 only.

3.2.4 Method of L-moments

The LM are linear combinations of certain probability
weighted moments with simple interpretations as measures
of location, dispersion and shape of the sample. The method
is very robust and less sensitive to outliers of the data base,
even for small samples (Vogel and Fennessey, 1993). Ac-
cording toHosking(1990), the first two L-moments for the
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Fig. 2. Quantile-quantile plots showing the fit of three theoretical distributions to the 90th and 99th percentiles of wind speed data from
REMO for each grid point in the federal state of Baden-Württemberg. Each point represents the data from the sample on the ordinate and
the corresponding theoretical estimate on the abscissa from the gamma(a), exponential(b), and generalized Pareto(c) distributions.

distribution function are

λ1 = ζ +
α

1+k
(14)

λ2 =
α

(1+k)(2+k)
, (15)

whereλ1 andλ2 depend on the estimated parameters,α and
k, and the threshold,ζ (see Sect.3.1.1).

3.3 Uncertainty estimate

Application of extreme value theory comprises several sta-
tistical uncertainties. Factors contributing most to statistical
errors are the infrequent occurrence of extremes, proper de-
scription of the tail of the distribution function, and proper
estimate of the unknown parameters of a CDF. Even if the un-
certainty can be reduced by appropriate statistical modelling
of the underlying data set as evaluated in the next section,
statistical errors still remain in the results.

To estimate the uncertainty of the results, confidence inter-
vals of the fitted CDF are determined by a bootstrap method
(e.g.,Efron and Tibshirani, 1997). This method is based on a
number of resamples obtained by random resampling with
replacement of the original data set (non-parametric boot-
strap). In this study, the original samples comprising the
most extreme gusts are resampled 1000 times. Return val-
ues are estimated from each sample by fitting and invert-
ing the GPD. Two-sided confidence intervals on the 90%
level of significance are obtained from the bootstrap samples.
Differences between two return values for a specific RP are
statistically significant if their 90% confidence intervals do
not overlap, which corresponds to the 1% significance level
(Kharin and Zwiers, 2000).

4 Evaluation of the most appropriate statistical
methods

The different methods described in the section above are ap-
plied to wind speed data from REMO and ECHAM5 to find
a CDF and parameter estimator most suitable describing the

properties of the sample. In Sect.4.3, we will evaluate the
stability of the results for different sample sizes. At each
grid point, the 100 highest wind speeds in the 30-year peri-
ods are considered without any spatial clustering. Therefore,
the days considered for the samples may slightly differ from
one grid point to another.

4.1 Sensitivity to the probability distribution

The three CDFs (Eqs.2, 3, and6) are applied to a sample
consisting of maximum gust wind speeds from REMO. From
the theoretical distributions, the 90th and 99th percentiles are
computed for each grid point and compared with the same
percentiles of the sample. For reasons of better distinguisha-
bility, the number of points in the diagrams is reduced to a
test region covering the federal state of Baden-Württemberg
(southwest Germany). However, the same results were ob-
tained for the whole area under investigation (not shown).
The two data sets are presented as scatter plots referred to as
quantile-quantile plots (Fig.2). This allow easy examination
and evaluation of the underlying CDF. The higher the scat-
tering around the 1:1 line, the lower the skill of the CDF to
reproduce the sample.

For all three distributions displayed in Fig.2, most of the
points fall close to the 1:1 line. While the results for the GPD
are almost unbiased, both the gamma and exponential distri-
butions yield lower gust speeds than the sample. When the
focus is on severe storms only, the tail of the distribution as
expressed, for example, by the 99th percentile is the most in-
teresting part. In all cases, its scatter is substantially higher
than for the other percentile. The lowest scatter, in particu-
lar for the 99th percentile values, is obtained when applying
the GPD. It should be noted that the unknown parameters,k

andα, were estimated by the ML method in Fig.2. The use
of other parameter estimators, however, did not change our
analysis of the most appropriate CDF in general (not shown).
As the GPD appears to be the best choice to fit the wind
speed data, it will be applied in all subsequent analyses of
this study.

Nat. Hazards Earth Syst. Sci., 10, 907–922, 2010 www.nat-hazards-earth-syst-sci.net/10/907/2010/



M. Kunz et al.: Extreme wind speeds – Part 1 913

Fig. 3. Shape parameter,k, as a function of different parameter estimators (ML, PWM, LM, MOM) for REMO wind speed data.

4.2 Sensitivity to the parameter estimation method

The four parameter estimators, MOM, ML, PWM, and LM,
are applied to gust wind speed data from REMO. Results
are evaluated in terms of the shape parameter,k, which is
decisive in particular for high RPs (see Sect.3). Whenk

is positive, GPD proceeds asymptotically towards an upper
bound for decreasing probabilities. For winter storms, the
upper bound must be far below the physics-based limit of
sound velocity, as the pressure gradient is assumed to have
an upper limit due to the balance with Coriolis, acceleration,
and friction forces according to the Navier-Stokes equations.
Besides, a velocity in excess of 300 km h−1 has never been
observed in Europe (maximum recorded gust in Germany:
259 km h−1 at the Wendelstein during windstorm Lothar on
26 December 1999). Also a sign change ink is problem-
atic when comparing two different time periods such that
the curves tend to diverge with increasing RP. This, however,
is important only for a low sampling uncertainty, as will be
studied in detail in Part 2 (Kunz et al., 2010).

From all grid points of the investigation area histograms
of k are calculated. Considered are the four parameter es-
timators for both periods, CTRL and A1B. As shown in
Fig. 3, the histograms are not very sensitive to the estima-
tion method. The requirement ofk to be in a range of±0.5
when applying the GPD is met for a large majority of grid
points and for all methods. Only a small fraction lies outside
this range (e.g., for ML: CTRL≈0.1%, A1B≈0.5%). More-
over,k is positive for most of the grid points, ensuring phys-
ically appropriate asymptotic behaviour of the GPD. This
is the case for both the CTRL and the A1B period, where
k tends to assume higher values. Comparing the different
methods shows that ML and MOM as well as PWM and LM
yield approximately similar results, in particular for CTRL.
The small differences between PWM and LM are not sur-
prising since they are based on certain weighted moments
of the sample. Both the histograms of ML and MOM show
a narrower spread and a higher amount of positive k-values

compared to the two other methods. Overall, ML produces
the largest number of grid points withk≥0 (approx. 93% in
CTRL and 97% in A1B) and yields more pronounced peaks.
For these reasons, we decided to apply ML in all subsequent
analyses.

4.3 Parameter sensitivity to a variable sample size

The definition of either a fixed threshold,ζ , (see Eq.2) or
a number of independent events entering the samples seems
to be somewhat arbitrary. The samples must be large enough
for any statistical analysis, but as the size increases, more and
more weaker wind speeds affect the CDF. In this section we
explore the robustness of the statistics with respect to vari-
able sample sizes, which vary between 40 and 150 (i.e., 1.3
and 5 events per annum on average, respectively). To elu-
cidate the sensitivity of the parameters for a larger, repre-
sentative domain unaffected by local-scale terrain variations,
statistics were applied to daily maximum wind speeds from
ECHAM5 (run 1).

According to Fig.4a and b, the climate change signal,1V ,
is almost insensitive to changing sample sizes at the two se-
lected grid points. Only for the high RP of 50 years,1V

shows considerable changes, in particular for the grid point at
49◦ N/9◦ E (Fig.4b). Here, a sample size of 82 events, for ex-
ample, yields a change of -0.1 m s−1, whereas it is –1.1 m s−1

when 137 events are considered. This confirms that the GPD
is also sensitive to lower wind speed data and not only to
the most extreme values (e.g.,Felici et al., 2007). The high
variability in1V , however, is within the confidence intervals
for the whole range displayed. For the 50-year RP, statistical
uncertainty decreases with increasing sample sizes, which is
not the case for a 1 or 10 years RP. Note that only the grip
point at 51◦ N/9◦ E (Fig.4a) indicate a significant increase in
extreme wind speed as the confidence intervals only include
positive values.

The free parameters of the GPD,k andα, were computed
by the ML method also for variable samples of the CTRL
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Fig. 4. Absolute changes in gust wind speed between A1B and CTRL with 90% confidence intervals (dotted lines) for a 1-, 10-, and 50-year
RP (a andb) and parameter values,α andk, for a 10-year RP in CTRL (c andd) as a function of sample size at two different grid points of
ECHAM5, at 51◦ N/9◦ E (a and c) and 49◦ N/9◦ E (b and d).

run. As can be seen in Fig.4, the two free parameters of
the GPD,k and α, depend on each other. An increase in
k is linked with an increase inα, and vice versa. At the
two grid points both parameters exhibit a comparatively high
variability over the whole range of sizes displayed. No dis-
tinct plateau, wherek andα are less sensitive to the number
of data, can be identified. As discussed above, the result-
ing climate change signal,1V , however, is only marginally
affected by this variability.

The hypothesis that 100 independent storm events may be
a sound number for the samples is neither supported nor dis-
proved by this sensitivity study. Rather it appears to be a
good compromise between focusing on extremes and con-
sidering enough random variables to reduce statistical uncer-
tainties. All subsequent examinations in this study rely on the
GPD with an ML estimator, and consider an RP of 10 years.

5 Evaluation of regional climate models

The general ability of one-way nested RCMs to accurately
simulate local-scale climate features when driven by large-
scale information was demonstrated in the so-calledBig-
Brother Experimentdesigned byDenis et al.(2002). They

found that small-scale low-level features absent from the ini-
tial and lateral boundary conditions are almost fully regener-
ated by the RCM. Using the same methodology,Diaconescu
et al.(2007), however, showed that errors in the driving mod-
els are passed to the RCM, suggesting that the large-scales
precondition the small-scales. This is an important constraint
in particular for extremes, where the GCMs and, thus, the
RCMs have problems describing the heavy tail of the distri-
bution function. In case of intense and small scale storms,
the low resolution of the driving GCM prevents reliable rep-
resentation of the maximum intensity (e.g.,Ulbrich et al.,
2001). Further limitations in the RCMs storm representation
are due to simplifications in model physics and shortcomings
in the gust wind parameterization schemes.

This section presents an evaluation of extreme gust wind
speeds as obtained from three RCM realizations. By com-
paring these data with CSHM and station observations,
main characteristics and features of the RCMs are identi-
fied. Keep in mind that only REMO data are based on a gust
wind parameterization scheme in terms of TKE, whereas for
CSHM and CCLM data empirical gust wind factors were
applied (see Sect.2). Besides, the CSHM wind fields are
based on annual maxima of the most severe storms modelled
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Fig. 5. Maximum gust wind speeds for a 10-year return period from CSHM(a), REMO(b), CCLM1 (c), and CCLM2(d). Note the different
scales of the color bars.

by a Gumbel distribution function. The resulting hazard
curves exhibit a steeper slope than that obtained from the
GPD. For a 2- and 10-year RP considered here, however, the
differences between the two methods are only marginal.

5.1 Comparison of spatial gust patterns

The gust wind fields for a 10-year RP displayed in Fig.5
show a distinct spatial variability due to the superposition
of atmospheric disturbances induced on different spatial and
temporal scales. On the large scale, the wind field is de-
termined by the frequency and intensity of extratropical
cyclones, both of which decreasing in north-to-south and
west-to-east directions (e.g.,Della-Marta et al., 2009). On
a local scale, the near-surface wind field is modified mainly
by the terrain’s roughness causing enhanced vertical ex-
change of horizontal momentum (Wieringa, 1993), and by
orographic effects, in particular by flow deflections at oro-
graphic structures (Smith, 1979). Consequently, the regions
most affected by high wind speeds are the North Sea coast
and the crests of the mountains as long as they can be re-
solved by the models. In contrast, the lowest values are typi-

cal of the north-eastern areas and of broad valley such as the
upper Rhine valley in southwest Germany.

Comparison of the different model results reveals the ben-
efit of higher model resolution. On the 1 km grid of CSHM
(Fig. 5a), gust speed shows considerable variation on the lo-
cal scale, which is more or less connected with the terrain
elevation. Significant changes are found over distances of
just a few kilometers. Unlike CSHM, the results of both
RCMs exhibit considerably reduced spatial variability of the
gusts, which is due in particular to the lower grid resolu-
tion of 10 and 18 km, respectively. All realizations exhibit
significantly lower gusts compared to that of CSHM. This
applies to the whole study area, irrespective of terrain and
land use characteristics. Only REMO (Fig.5b) shows dis-
tinct spatial variations of the gusts strongly controlled by the
height of the terrain. Enhanced gusts over the crests of the
low mountain ranges, a prominent feature in CSHM, are re-
produced to a certain degree, but with a considerable lower
magnitude of less than 35 m s−1. Very high wind speeds in
excess of 40 m s−1 are obtained only over the Alpine regions
of Switzerland and Austria.
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Fig. 6. Relative number of grid points as a function of gust wind
speeds for a 10-year return period from CSHM, REMO, CCLM1,
CCLM2, and SYNOP. Statistical parameters of the distributions are
listed in Table3.

In the two CCLM runs (Fig.5c and d), spatial differen-
ces are even less pronounced. In general, the wind speed is
reduced further compared to both CSHM and REMO. Cer-
tainly, one reason for the underestimation is the inability of
CCLM to resolve important orographic structures because
of the lower resolution of 18 km. Over almost flat terrain,
however, such as the northern parts of Germany, where the
horizontal resolution is expected to be of minor importance,
CCLM still yields lower gust speeds than REMO. Hence,
it can be assumed that the simplified gust parameterization
based on empirical gust factors (see Sect.2.3) is another
reason for the negative bias. Although driven by different
realizations of ECHAM5, the two CCLM runs show very
similar structures. Only over the central parts of Germany
wind speed is slightly more underestimated in the CCLM2
run than in the first one. On the other hand, both the patterns
and magnitudes of the gusts are almost the same over North-
ern and Southern Germany as well as over the Alpine region.

Histograms of the gusts were drawn (Fig.6) to quantify
all differences of the three RCM runs without giving spe-
cial consideration to the location. Related statistical val-
ues are listed in Table3. In order to refer to the same do-
main, only grid points in Germany were considered in this
analysis. Because the number of SYNOP stations is limited,
both the histogram (moving average of 5·1v=0.5 m s−1) and
the statistical parameters should be regarded as rough esti-
mates.

Again, the magnitudes of the gusts are seen to be con-
trolled strongly by the resolution of the model. Accord-
ingly, the highest medians of 34.2 and 33.4 m s−1 are ob-
tained by the SYNOP and CSHM data. Against to this, both
CCLM runs showing roughly the same distribution estimate
the lowest median of 24.5 m s−1. Compared to CSHM (and
SYNOP), the REMO and CCLM gusts are lower by a fac-

Table 3. Statistical parameters of the distribution of the gust wind
speeds from SYNOP, CSHM, REMO, CCLM1 and CCLM2 data
with mean and 25th, 50th, and 75th percentiles of the distribution
function (q25, median, q75) in m s−1.

SYNOP CSHM REMO CCLM1 CCLM2

Mean 35.2 33.9 29.7 25.5 25.5
Median 34.2 33.4 28.7 24.5 24.6
q25 32.3 31.8 27.5 23.5 23.5
q75 37.2 35.1 30.6 25.7 25.7

tor of 4.2 and 8.4 m s−1, respectively, which is equal to a
relative difference of 12.4 and 25.8%. All models show a
distinct second peak due to the increase of wind speed over
the oceans and – depending on spatial resolution – the moun-
tains.

Interestingly, the main parts of the histograms of REMO
and CCLM1 are shifted relative to each other, while their
second peaks exhibit almost the same values of approxi-
mately 35 m s−1. The shift between the major parts of the
histograms suggests a kind of linear relation between the two
data sets, at least on average irrespective of the location. This
can be interpreted as further indication for weaknesses in the
rough gust wind parameterization scheme applied to CCLM
data. In Fig.5, the area of the highest wind speed in both
cases is located over North and Baltic Sea, where the spa-
tial resolution is expected not to be of major relevance. As
these two models are driven by the same GCM realization,
this means that the driving global model is decisive for the
results of the RCMs as long as the terrain is almost homo-
geneous. Over complex terrain, on the other hand, the RCM
features become more important, as can be seen in the diffe-
rences between the REMO and the CCLM results.

5.2 Comparison at station locations

In the next step, wind speeds of the RCMs are evaluated with
observations by DWD weather stations. For direct compari-
son, the model grid points closest to the observation site were
used without any interpolation. It should be noted that wind
speed observations are point measurements which may be in-
fluenced strongly by terrain and land use features in the im-
mediate vicinity of the site. Model data, on the other hand,
represents conditions on a scale similar to the grid-size (more
than 100 km2). Hence, any comparison is subject to the dif-
ferent representation of terrain characteristics.

Gust wind speeds as a function of the return period, re-
ferred to as hazard curves, are shown in Fig.7 at six sites
related to specific terrain features and/or geographical loca-
tions (see Fig.1). The stations of Heligoland (4 m a.s.l.) and
Rostock (4 m) located on the Northern Sea and Baltic Sea
coasts, respectively, show the highest wind speeds due to ex-
posure to severe storms originating from the North Atlantic.
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Fig. 7. Gust wind speed as a function of the return period with 90% confidence intervals for selected observation sites of Heligoland, Teterow,
Rostock, Berlin, Stuttgart, and Hohenpeissenberg (station height indicated; see Fig. 1 for the locations) according to observations, REMO,
and CCLM data.

Together with the stations of Teterow (46 m), Berlin (45 m),
and Stuttgart (419 m), both the west-to-east as well as the
north-to-south gradients in wind speed are displayed. While
the Teterow station is surrounded by almost flat farmland, the
Berlin station is representative for a large built-up area where
wind speeds are reduced by a higher roughness length. Fi-
nally, the station of Hohenpeissenberg (977 m) illustrates the
considerable increase of wind speed over the mountains.

Again, it is obvious that the three RCM simulations under-
estimate the gusts at all stations over the whole range of pro-
bability displayed. In particular, the two CCLM runs, which
are in good agreement to each other, show the largest bias,
except for the station of Heligoland. This indicates that the
simplified gust parameterization scheme applied to CCLM
data provides reliable results, at least over almost homoge-

neous, flat terrain. At the station of Berlin, the RCM results
are similar to that obtained for Teterow where the measure-
ments yield higher gusts because of a low roughness length.
As already seen in Fig.5, the smallest discrepancies between
observations and simulations appear for the island station
of Heligoland, whereas the greatest differences are found
for the mountain station of Hohenpeissenberg. Note, how-
ever, that the method of the nearest neighbour applied in this
comparison is problematic over complex terrain where wind
speeds vary considerably even over short distances. In all
cases, the characteristics of the hazard curves are similar in
terms of slope and asymptotic behaviour for long RPs. The
hazard curves of CCLM1 and REMO intersect only at the
station of Heligoland, but do so for high RP.
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Fig. 8. Distribution of gust wind speed for a 2-year(a) and 10-year(b) return period from observations and different RCMs for three height
intervals. Indicated are maximum and minimum values, median and mean (star), 25th and 75th percentiles (box), and 1.5·interquartile range
(iqr; vertical lines).

Plotting positions of the cumulative probability (dots in
Fig. 7) are estimated byFi=1−(xi−0.44)/(n+0.12), where
x1≥...≥xn are the ordered maxima andn is the total number
of eventsxi according toGringorten(1963). This plotting
rule originally was derived from a double exponential distri-
bution and is most appropriate for displaying extreme wind
speed data. As can be seen in the spread of the maxima ob-
served, severe storms occur only infrequently, which is a gen-
eral feature of meteorological extremes. For example, when
splitting the samples observed at the station of Stuttgart into
two equally spaced intervals (1v′

=9 m s−1), 94 of the events
lie in the first interval (20–29 m s−1), whereas only 6 events
are in the second interval (29–38 m s−1). This results in high
skewness for the tail of the distribution function. As can
be seen in Fig.7, this skewness is reproduced more or less
by all RCM simulations and at all sites. At the grid points
nearest to the station of Stuttgart, for example, the upper in-
terval comprises only 14 events according to REMO and 12
and 5 events according to CCLM1 and CCLM2, respectively.
Hence, it can be concluded that the RCMs are able to repro-
duce reasonable tails of the distribution function defining the
extremes.

The confidence intervals confirm that statistical uncer-
tainty increases with RP. When an RP in the range of the pe-
riod of investigation is considered without any extrapolation
to higher levels, the statistical errors are below 20%. Interest-
ingly, statistical uncertainties of the hazard curves calculated
from RCM data are not higher than those from the observa-
tions. The staircase-shaped positions in the observations at

the sites of Teterow, Rostock, and Berlin are due to rounding
of the recorded data until 1990 at some stations of the former
German Democratic Republic.

To rely not only on a few selected stations but to consider
all observations in operation during CTRL, statistical distri-
butions of the gusts were calculated for a 2- and 10-year RP
(Fig. 8). Because of the strong influence of the terrain height
on wind speed, the results were divided into three different
height classes.

In the first class (1–200 m), the gusts observed vary be-
tween 24 and 36.5 m s−1 for a 2-year RP, and between 26 and
39 m s−1 for a 10-year RP. This class represents grid points
with a great variety of terrain features including coastal ar-
eas and lowlands as well as deep valleys down to the south-
ern most parts of the study area. As most of the grid points
are from northern parts, where synoptic-scale storms occur
more frequently than in all other regions, higher values are
obtained in this than in the second height class (200–600 m).
All models, including CSHM, underestimate both the mag-
nitude and variability of the gusts.

In the next class, 200–600 m, the RCM results are in bet-
ter agreement to observations and CSHM. Closest to the
distribution observed is REMO, in particular for the 2-year
RP, where the median of the gusts is underestimation only
by 9.0%. The two CCLM runs, on the other hand, show
marginally reduced values, but also lower variability in terms
of maxima and differences between the third and first quar-
tiles.
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As expected, the highest wind speeds are observed over
mountainous regions (>600 m). This increase is adequately
reproduced by REMO, but not at all by the two CCLM runs.
Also the total spread of the distribution function from the ob-
servations (and CSHM) is partly reproduced by the REMO
results but, again, not so by the two CCLM runs. Only
slight differences are obtained compared to the other two cat-
egories. The bias of the model results is higher for the up-
per than for the lower tail of the distribution. This reveals
that the highest wind speeds in the models exhibit a higher
bias than the lower gusts. Interestingly, the distribution of
the gusts observed extends to both sides in that height class.
This means that both the highest and the lowest wind speeds
are observed over the low mountain ranges, the latter in deep
valleys on the lee side of the mountains.

6 Summary and conclusions

Extreme value analysis techniques were evaluated and ap-
plied to RCM results in order to estimate the skill of the mod-
els to reproduce reliable distributions of gust wind speed.
First, we tested different distribution functions and meth-
ods of parameter estimation as well as the robustness of
the methods to variable sample sizes. Maximum gust wind
speed data obtained from three RCM realizations were eva-
luated with observations and a pre-existing storm hazard map
for Germany within the climatological period from 1971 to
2000. In this process, the main characteristics inherent in the
different models and realizations were examined with respect
to location and elevation.

The following conclusions are drawn from the statistical
tests conducted in this study which are relevant to statistical
descriptions of extreme wind speed data from an RCM (or
GCM):

– The method found to be most suitable for statistical de-
scription of a sample of extreme wind speed data are
the GPD in combination with an ML estimator. Appli-
cation of this method to RCM data yields the least scat-
ter between data from the sample and inferred from the
distribution fitted as well as the smallest number of grid
points with a negative shape parameter. This finding
is in compliance to other studies based on wind speeds
from observations or reanalysis data (e.g.,Brabson and
Palutikof, 2000; Della-Marta et al., 2009).

– For high RPs (>10 a), the results were found to be sen-
sitive to variable sample sizes. A good compromise is
a 10-year RP, where related gust speeds are highly de-
structive but, on the other hand, statistical uncertainty is
acceptable.

The climatological wind fields derived from the RCMs of
REMO and CCLM show distinct differences in the magni-
tude of gusts and in spatial distribution. Several conclusions

can be drawn from comparisons with observations and the
storm hazard map (CSHM):

– The RCMs employed basically are able to reproduce re-
liable extremes which occur only infrequently. This is a
prerequisite when applying extreme value analysis tech-
niques.

– In general, the spatial distribution of storm climatology
is well reproduced by all model runs. However, statis-
tics reveal a systematic underestimation of simulated
gusts by 10 to 30% for a 10-year RP, depending on loca-
tion and height of terrain. Similar trends were found by
Leckebusch et al.(2006), who evaluated different RCM
results from the EU project PRUDENCE with respect
of the upper tail of the distribution function. However,
and to our best knowledge, no evaluation of RCM gust
speeds described by extreme value statistics has been
conducted so far.

– Higher spatial resolution of the models, such as the
10 km of REMO, permits better representation of the
main orographic structures, thus yielding higher spatial
variability of the gusts over complex terrain. Reliable
representation of the local storm climate, however, re-
quires even higher resolution.

– In this study, the variance of climatological wind fields
is determined mostly by the RCM and its gust param-
eterization scheme. The influence of the driving global
model in terms of the first two ECHAM5 realizations
is found to be of minor importance, in particular over
complex terrain where the spatial resolution and physi-
cal parameterizations are most decisive.

– Due to the variability of the model results, an ensemble
of different RCM runs is essential for the assessment
of future changes in extreme wind speeds. This was
considered in the PRUDENCE project for mean wind
speeds (Beniston et al., 2007; Rockel and Woth, 2007)
and in the EU project ENSEMBLES for gust speed as
well as in a recent paper ofRauthe et al.(2010).

– In order to obtain more realistic wind speeds, it
is essential to introduce comprehensive parameterisa-
tion schemes for the near-surface wind fields and the
gusts, for example the physically-based gust model of
Brasseur(2001). As shown in several studies, high-
resolution limited area models are able to reproduce re-
liable wind gusts if a physically based gust wind pa-
rameterisation is considered (Goyette et al., 2003; Pinto
et al., 2009; Schwierz et al., 2009). The lack of such
a parameterisation in the CCLM runs is the main rea-
son for the significant underestimation of the gusts com-
pared to REMO.
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The underestimation of the gusts can be ascribed to the
spatial resolution of the global-regional model chain. As a
result of the coarse resolution of approximately 200 km, the
GCM is unable to simulate reliably pressure fields and pres-
sure gradients (Della-Marta et al., 2009). Severe storms of
limited spatial extension of a few hundred kilometres only,
such as windstorm Lothar in December 1999, are not sim-
ulated reliably by a GCM (Wernli et al., 2002). Even if
the RCM offers the freedom to allow for the development
of internal dynamical structures not imprinted on the lat-
eral boundaries, it cannot be expected that exceptional strong
pressure gradients evolve within the RCM domain. This hy-
pothesis is supported by the fact that also CCLM runs on
a 7 km grid, driven by ERA-40 reanalysis data, yield lower
pressure gradients and higher core pressures for past severe
storms compared to observations. As shown byHofherr and
Kunz (2010), gust wind speeds obtained from these runs for
specific RPs are considerably lower compared to both the
CSHM and observations. Besides, the higher the resolution
of the RCM, the steeper are the mountain slopes, producing
flow acceleration and vertical transport of horizontal momen-
tum, both increasing near-surface gusts.

On the other hand, it is found that the models are able to
reproduce approximately the spatial variability of the wind
fields in comparisons of the observations and CSHM. There-
fore, it can be assumed that the underestimation of the gusts
is a systematic error. As far as the climate change signal is
concerned, it can be supposed that the constraints and short-
comings discussed above will remain the same irrespective
of the time period considered. Consequently, systematic er-
rors will vanish when relative differences of gust wind speeds
between two different time periods are computed.

The methods found in this study to be most suitable for
statistically describing extreme wind speeds will be em-
ployed to different RCM scenarios in Part 2 of this study
(Kunz et al., 2010). Relative changes in gust wind speed be-
tween a past (CTRL) and a future (2021–2050) time period
will be examined using an ensemble of RCM runs compris-
ing different models, emission scenarios, and realizations of
the GCM.
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