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Abstract. Many slopes in the Alps are prone to rockfall and
forests play a vital role in protecting objects such as (rail)
roads and infrastructure against rockfall. Decision support
tools are required to assess rockfall processes and to quan-
tify the rockfall protection effect of forest stands. This paper
presents results of an iterative sequence of tests and improve-
ments of a coupled rockfall and forest dynamics model with
focus on the rockfall module. As evaluation data a real-size
rockfall experiment in the French Alps and two 2-D rockfall
trajectories from Austria and Switzerland were used. Mod-
ification of the rebound algorithm and the inclusion of an
algorithm accounting for the sudden halt of falling rocks due
to surface roughness greatly improved the correspondence
between simulated and observed key rockfall variables like
run-out distances, rebound heights and jump lengths for the
real-size rockfall experiment. Moreover, the observed jump
lengths and run-out distances of the 2-D trajectories were
well within the stochastic range of variation yielded by the
simulations. Based on evaluation results it is concluded that
the rockfall model can be employed to assess the protective
effect of forest vegetation.

Correspondence to:W. Rammer
(werner.rammer@boku.ac.at)

1 Introduction

Forests in mountainous regions provide important protection
functions for society and particularly the protection against
rockfall has attracted considerable attention recently. Rea-
sons are that rockfall is one of the most common natural
hazards in mountainous landscapes, and that the protective
effect of many European mountain forests may decrease in
the future due to abundant old-growth phases with a lack of
regeneration (e.g., Ott et al., 1997; BFW, 2004). To study the
development of the protective effect as well as the influence
of forest management, reliable simulation tools are required
which are able to take into account the spatial pattern of rock-
fall processes on slopes as well as the effect of forest vege-
tation composition and structure on run-out distances and ki-
netic energies of falling rocks (Stoffel et al., 2006; Dorren et
al., 2005). Due to the long time horizons of regeneration pro-
cesses in mountain forests, models must be able to cope with
time scales of several decades. Of particular importance are
trade-off relationships between rockfall protection and other
forest services and functions within the framework of multi-
functional forest management.

Rockfall is defined here as a fast gravitational movement
of rock boulders, rolling, tumbling or sliding down a hill-
slope (Selby, 1995). Boulders act rather independently and
the boulder size considered for trajectory analysis is typically
below 5 m3.

A wide range of rockfall models exists, covering different
spatial scales and levels of complexity. Historically, among
the earliest approaches are 2-D rockfall models that simu-
late rock trajectories along a slope profile (e.g. Bozzolo and
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Pamini, 1986; Azzoni et al., 1995; Pfeiffer and Bowenm,
1989; Pfeiffer et al., 1993). Typically, such models have been
applied to support the design of technical rockfall protection
measures. With the evolution of digital mapping and spatial
modeling techniques a new class of 3-D models, simulating
individual trajectories based on a digital elevation model, be-
came increasingly popular (e.g. Agliardi and Crosta, 2003;
Dorren et al., 2004; Lan et al., 2006). Such models are typi-
cally used on local to regional scales.

However, although forests can offer an effective protection
against rockfall (e.g. Bigot et al., 2009) only a small number
of rockfall models take into account the mitigating effect of
trees on forested slopes. These models consider the effect of
forest vegetation either implicitely (e.g. Brauner et al., 2005;
Wehrli et al., 2006; Berger and Dorren, 2007), using aggre-
gated stand variables like stand density or average diameter at
breast height, or spatially explicit (Dorren et al., 2006), sim-
ulating individual tree hits along a rocks trajectory. Wehrli et
al. (2006) conclude that a spatially explicit representation of
forest structure would enhance the simulation approach.

Recently Woltjer et al. (2008) developed a spatially ex-
plicit 3-D rockfall model and coupled it with the process
oriented 3-D forest patch model PICUS v1.4 (Lexer and
Hönninger, 2001; Seidl et al., 2005). In Woltjer et al. (2008)
the new rockfall model was tested for parameter sensitivity
and for its ability to assess rockfall protection effects in line
with static formulations from the literature (Gsteiger, 1993;
Brauner et al., 2005). Moreover, the model showed plausi-
ble sensitivity to forest management as implemented in the
forest model. While the forest model has been evaluated rig-
orously in several previous studies (e.g., Seidl et al., 2005,
2009), an evaluation of the rockfall module against empirical
data is presented in this article.

The objectives of this study are twofold. First, recent
model improvements are introduced, and second, the model
is evaluated against empirical rockfall data from four test
cases from France, Switzerland and Austria. In an iterative
manner results from comparisons of model simulations and
evaluation data feed back into model enhancement. Finally,
conclusions on the applicability of the model are drawn.

2 Methods and materials

2.1 The forest dynamics model

The forest model used in PICUS Rock’n’Roll is the hybrid
forest patch model PICUS v1.4, which incorporates elements
of a classical patch model as well as a stand level production
model based on physiological principles. A detailed descrip-
tion of the hybridization is provided in Seidl et al. (2005).
Here, just a brief overview of the core model concept is
given.

Basic modelling entity is the individual tree above a
threshold of 1cm diameter at breast height. Tree biomass
is arranged horizontally on 10×10 m2 patches and vertically
in 5 m canopy layers. A three-dimensional light model, al-
lowing for the explicit consideration of direct and diffuse
radiation within the canopy, is used to model inter- and in-
tra tree species competition. The incorporation of a mod-
ule that estimates NPP (net primary production) based on the
concept of radiation-use efficiency (Landsberg and Waring,
1997) enhanced the robustness in predicting growth along
environmental gradients. It also improved the physiological
foundation of the model with regard to changing environ-
mental conditions. The model requires input of incoming ra-
diation, temperature, precipitation and vapor pressure deficit
in at least monthly resolution.

2.2 The rockfall model

This contribution focuses on the evaluation of the rock-
fall model Rock’n’Roll as presented in detail in Woltjer et
al. (2008). This section presents a brief overview of the
model concept. The rockfall model simulates spatially ex-
plicit trajectories of spherical rocks of variable size (diam-
eter, mass) on a three-dimensional slope. A rock trajectory
consists of a series of rolling and/or jumping motions. The
model uses a lumped mass approach for simulating free fall
and ground impacts, and a rigid body approach for the simu-
lation of rolling motions and tree impacts. Kinetic energy of
a falling boulder is dissipated by (i) rolling friction for rolling
motions, (ii) ground impacts for jumping motions, and (iii)
tree impacts during rolling and jumping motions.

In a simulation rock trajectories start with a predefined
initial velocity either from predefined or from randomly se-
lected positions within the simulated area. A rock stops,
when its kinetic energy falls to zero.

The slope surface is characterized by coefficients of resti-
tution for jumping mode (i.e. rebound parameters) and by
rolling friction coefficients for rolling mode. For the cur-
rent study the rolling friction coefficient was kept constant
at a value of 0.5 which is considered as a sensible default
value for various ground types (see Azzoni et al., 1995). Co-
efficients of restitution describe the ratio of the normal (or
tangential) velocity component of the center of mass before
and after an impact (e.g. Kharaz et al., 2001). Parameter val-
ues for various surface types are retrieved from the literature
(e.g., Azzoni et al., 1995; Azzoni and de Freitas, 1995; Chau
et al., 2002; Schweigl et al., 2003; Heidenreich, 2004).

The rockfall model includes several stochastic compo-
nents: (i) the lateral deviation and the jump angle after
ground impacts, and (ii) the lateral deviation after tree im-
pacts. Moreover, the coefficients of restitution are subject to
uncertainty and may vary within a specified range of variabil-
ity. Consequently, simulated trajectories may show substan-
tial variability with regard to key variables like jump lengths
or rebound heights.
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In order to utilize frequently available 2-D trajectories for
model validation and calibration a special mode was imple-
mented in the rockfall model. Documented 2-D trajectories
from single rockfall events usually report jump lengths and
slope angles along the actual trajectory. In a simulation the
rockfall model uses the trajectory profile as slope topography
and forces the falling boulder along the profile. Within that
“2-D mode” all modeled rockfall processes except tree hits
are applicable and energy conservation laws are satisfied.

Rock’n’Roll is implemented in the C++ programming lan-
guage. The rockfall model is integrated with the PICUS for-
est model and can be invoked every simulated year to assess
the effect of vegetation on rockfall activity. The software is
optimized for high calculation performance. For instance,
the algorithms of rock movement are not based on fixed time
steps but rather rely on analytical equations of motion to fos-
ter efficient computations.

Based on findings of preliminary model evaluation exer-
cises and conceptual limitations of the modeling approach
some components have been revised and extended. In the fol-
lowing sections these model enhancements are introduced.

2.2.1 Representation of surface topography

A major enhancement compared to the model variant in
Woltjer et al. (2008) is that in the current version surface
topography is modeled as a triangulated irregular network
(TIN). A TIN describes a surface as a set of non-overlapping
triangles with variable density. Besides raster based digital
elevation models, TINs are frequently used for the represen-
tation of three dimensional surfaces, and modern GIS soft-
ware packages usually support the conversion from raster
based digital elevation models (DEM) to TINs and vice
versa. While the vast majority of all available rockfall mod-
els use raster based DEM, we implemented a TIN-based ap-
proach. Reasons for the decision to use TINs are, inter alia,
that the variable density of triangles allows a memory and
time efficient computation of slope regions with more uni-
form terrain features, and that the flexible spatial resolution
of a TIN is easier to couple with the fixed 10×10 m patch
size of the forest model.

The spatial distribution of different surface properties, e.g.
coefficients of restitution, is incorporated in the model by us-
ing a raster based approach. Surface properties are mapped in
a GIS environment using arbitrarily shaped polygons which
are imported as grids into the coupled rockfall-forest model.

2.2.2 Tree hits

In the original model variant the algorithm for the simulation
of tree hits was designed as a set of mechanical and geomet-
rical formulations based on fracture energy experiments in
the laboratory. However, in reality a rock impacting a tree
triggers far more energy-consuming processes, like defor-
mation of the root-soil system or the swaying of the whole

tree. Recently published empirical data on that issue (Dorren
and Berger, 2006) and results from a numerical tree impact
model (Jonsson, 2007) allow the implicit inclusion of these
processes.

Our implementation of the tree hit algorithm is very close
to the published model of Dorren et al. (2005; see also Dor-
ren and Berger, 2006). The maximum amount of energy that
can be dissipated by a tree during an impact (Ediss,max) de-
pends on tree species and is related to the diameter of the tree
at breast height via an exponential relationship (Eq. 1).

Ediss,max= 38.7 DBH2.31 (1)

Ediss,max = Energy dissipation potential forAbies albatrees
[kJ]. See Dorren et al. (2005) for coefficients of further tree
species. DBH = diameter at breast height [cm].

For impact positions off the central bole axis only a frac-
tion of the dissipation potential is exploited. This is ex-
pressed by a sigmoid function relating the consumable frac-
tion of the dissipation potential to the impact position. If the
kinetic energy of a rock during a frontal impact is higher than
the dissipation potential, the tree breaks.

The horizontal deviation of the rock after the tree hit
is modeled by deviation matrices, which define deviation
ranges for three different impact types (frontal, lateral and
scratch). Within this range a random number determines the
realized deviation angle. For situations where the energy of
the falling rock is high compared to the energy dissipation
potential of the tree an additional upper deviation limit avoids
unrealistic deviation angles. This limit is estimated as the hy-
pothetical maximum deviation of the rocks’ trajectory given
the energy dissipation potential of the focal tree.

2.3 Data

2.3.1 Real-size rockfall experiments Vaujany

From 2001 to 2003 real-size rockfall experiments have been
realized on a forested and an adjoining unforested test slope
in the For̂et Communale de Vaujany in France and have
been described in detail in several publications (Dorren et
al., 2005, 2006; Bourrier et al., 2009). Here we briefly in-
troduce the experimental setup. The test sites are located
on a post-glacially developed talus cone, which mainly con-
sists of rock avalanche, snow avalanche and rockfall deposits
and is situated on altitudes ranging from 1200 m to 1400 m
(a.s.l.) with a mean slope gradient of 38◦. A digital elevation
model with a resolution of 2.5×2.5 m was available for both
sites and surface characteristics (diameters of rocks covering
the slope, etc.) were grouped into surface types and mapped
throughout the test slopes (see Table 1).

The unforested Site 1 (see Fig. 1 for a profile) has the mor-
phology of a channel for the first 240 m (projected) between
the starting point and a crossing forest road. From there Sec-
tion B extends for 100 m (projected) to another forest road,
below which the slope ends in the valley bottom (Section C).
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Fig. 1. Profiles of the test sites in Vaujany starting from the release points of the rockfall experiments along the steepest path. Left: unforested
Site 1, right: forested Site 2. The camera equipped test sections extend from the top of the slope down to the upper forest road. The observed
run-out zones extend further (maxima indicated by triangles).

Table 1. Coefficients of restitution (rn = normal, rt = tangential
coefficient) used in the simulation series for the Vaujany sites.

Surface type rn rt

Site 1 (unforested)
(a) Fine angular debris 0.30 0.75
(b) Coarse debris 0.30 0.65
(c) Fine angular debris and soil 0.30 0.75
(d) Road 0.30 0.85

Site 2 (forested)
(e) Fine angular debris 0.30 0.75
(f) Soil and small angular debris 0.32 0.75
(g) Forest soil 0.30 0.85
(h) Forest soil with woody debris 0.20 0.85

The first section after release is mainly covered by debris
with diameters of 8–10 cm (type (a) in Table 1), Section B
is dominated by bigger blocks between 40 and 80 cm (type
(b) in Table 1) while Section C is covered by fine debris and
soil material (type (c) in Table 1).

The forested Site 2 represents a typical rockfall slope in
the European Alps (see Fig. 1). The main tree species with
regard to basal area are Silver fir (Abies alba, 72%), beech
(Fagus sylvatica– 14%), Norway spruce (Picea abies(L.)
Karst. – 6%), and Sycamore (Acer pseudoplatanusL. – 6%).
The stand is characterized by a mean tree diameter at breast
height of 31 cm and a stand density of 290 trees per hectare.
The coordinates of each tree on Site 2 were mapped. In the
upper half of the slope at Site 2 the spatial variability (i.e.
patchiness) of the main surface types (e) and (f) (compare
Table 1) was considerably higher compared to Site 1.

A total of 218 rocks with a mean diameter of 0.95 m (mean
volume=0.49 m3, S.D.=0.3 m3) were released individually
by an excavator from a forest road. Three-dimensional rock
trajectories were captured by combined field measurements

and video analysis. Rock velocities and rebound heights
were calculated by a frame-per-frame video analysis.

For the model evaluation mean and maximum of rock ve-
locities and rebound heights were available at both sites. The
data set further included the distribution of run out distances
(ROD) and the jump lengths near the camera positions at
both sites (see Fig. 1). For Site 1 the data set was extended
by rebound heights and velocities of individual jumps near
the cameras, for Site 2 also the distribution of the heights of
tree hits on the bole was available.

2.3.2 Single 2-D rockfall trajectories in Steg and Bad
Ischl

In addition to the Vaujany data set we used two rockfall tra-
jectories of real rockfall events for model evaluation (Berger
et al., 2004). In both cases a 2-D-profile was derived by sur-
veying impact craters of single rockfall events. Addition-
ally, the starting points of the two rockfall trajectories were
identified and the size and mass of the rocks were measured.
The first trajectory was recorded in Steg, Switzerland, after a
rockfall event in March 2003 on a slope with an average incli-
nation of 31◦. The rock had a diameter of 1.84 m and a mass
of 9100 kg and stopped after 37 ground impacts and 441 m
(planimetric) run out distance. The slope is mainly covered
by pasture and is crossed by a road and a narrow rock out-
crop. The surveyed data includes qualitative characterization
of surface properties along the whole trajectory (see Fig. 2
and Table 2). In Bad Ischl, Austria, in summer 2004 a rock
with a diameter of 0.96 m and a mass of 1250 kg hit and dam-
aged a rockfall net protecting a parking lot. Here, the slope
with an average inclination of 40◦ is covered by sparse for-
est. Except the starting zone, a steep and rocky cliff, shallow
forest soils covered by woody detritus characterize the slope
surface. The trajectory from the assumed starting point to
the rockfall net had a length of 250 m (planimetric). Over the
entire trajectory nine jumps were recorded (Figs. 2 and 9 and
Table 2).
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Fig. 2. Slope profiles in Steg (left) and Bad Ischl (right). The lowercase characters denote the surface types presented in Table 2.

2.4 Model validation

2.4.1 Test site Vaujany

The coefficients of restitution for each surface type from the
Vaujany test sites were extracted from the literature (e.g., Az-
zoni et al., 1995; Azzoni and de Freitas, 1995; Chau et al.,
2002; Schweigl et al., 2003; Heidenreich, 2004) (Table 1).
To mimic the release of the rocks from the shovel of the exca-
vator in the simulations the rocks were started from a height
of 1.5 m above ground with a speed of 3 ms−1 and an angle
of −30◦ (relative to the horizon).

To account for differences in the shape of the rocks we
varied the tangential coefficient of restitutionrt randomly by
adding a value from the range [−0.05 to 0.05] assuming a
uniform probability distribution. An independent stochastic
variation of both coefficients may lead to unrealistic jump
angles. Due to lacking information on a possible cross cor-
relation betweenrt and rn we decided to vary onlyrt due
to its higher relevance for the calculation steps during rock
rebounds.

To achieve statistically robust results two different simula-
tion series were run: (i) a total of 10 000 rocks with a diam-
eter of 0.95 m were released from the original starting point,
and (ii) to gain insight into the variability of extreme values a
series of 100 simulations, each consisting of 100 rocks with
a diameter of 0.95 m, were also performed.

For the forested Site 2 we used the measured trees on their
mapped positions as well as tree species, diameter and tree
height. For the simulation series the dynamic components of
the forest model were deactivated. Contrary to the in situ ex-
periment, where the forest structure changed potentially with
every released rock, simulated rocks always faced the same
trees. For each simulated rockfall trajectory mean, minimum
and maximum velocity, rebound heights, jump lengths, tree
contacts as well as run out distance were recorded and com-
pared to experimental data.

Table 2. Coefficients of restitution (rn = normal,rt = tangential)
used in the 2-D simulation series Steg and Bad Ischl.

Surface type rn rt

(a) Solid rock 0.40 0.90
(b) Weathered rock 0.40 0.85
(c) Fine angular debris 0.30 0.75
(d) Forest soil (with coarse debris) 0.30 0.75
(e) Forest soil (deep) 0.30 0.80
(f) Forest soil (shallow) 0.35 0.80
(g) Pasture 0.35 0.80
(h) Pasture (water influenced) 0.30 0.80

2.4.2 2-D trajectories in Steg and Bad Ischl

For the simulation of the 2-dimensional trajectories, the rock-
fall model was operated in “2-D”-mode, where the trajecto-
ries of the simulated rocks are forced along the slope profile.
Also the tree hit module was disengaged because no tree hits
occurred along the trajectories.

Quantitative coefficients of restitution were assigned to
each mapped surface cover type along the trajectories using
information from in situ field tests on representative ground
materials from the literature (Azzoni et al., 1995; Azzoni and
de Freitas, 1995; Schweigl et al., 2003; Heidenreich, 2004).
Due to missing information about the exact starting condi-
tions all trajectories were initiated in rolling mode with a ve-
locity of 1 ms−1.

To account for the stochasticity of the modelled processes
10 000 rocks were simulated for each 2-D site and analyzed
for the run out distance of each trajectory as well as the en-
ergy at the position of the rockfall net in the Bad Ischl case.
Additionally, the profiles were divided into segments of 10 m
length along the slope and the mean, minimum and maxi-
mum length of jumps that ended in that respective section
were recorded.
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3 Results

3.1 Initial simulation runs in Vaujany

Simulations were run at both sites in Vaujany according to
the setup described in Sect. 2.3.1 with the initial model ver-
sion. A first inspection of simulated and observed rockfall
parameters yielded the following results: for both sites in the
upper part of the slope (labelled as “upper part” in Fig. 1) the
jump lengths were generally too low whereas in the lower
parts of the slope jump lengths were clearly overestimated
at both sites with regard to both mean values and variabil-
ity (Fig. 3; upper panel). The deviation between observed
and simulated rebound height was smaller (Fig. 3; lower
panel), but with a similar tendency to underestimate on the
upper slope and overestimate in the lower parts of the slope.
That simulated rebound heights were partly overestimated
was also confirmed by the simulated heights of tree hits at
Site 2 (Fig. 3). Furthermore, the simulated maximum values
for rebound heights and rock velocities were found too high
(not shown).

In addition, the distribution of the run out distances (ROD)
differed substantially from observations at both sites (Fig. 4).
Based on these findings the rebound algorithm, one of the
central modules of the rockfall model (i.e. the calculation
of energy dissipation during a ground contact and the re-
sulting jump angles after ground contact), was re-analysed.
The current model version (Woltjer et al., 2008) treats the re-

bound process as an inelastic point contact based on impulse-
momentum law. It is well known that this is a somewhat
unrealistic and oversimplifying assumption, nevertheless this
approach is frequently used in rockfall models (e.g. Stevens,
1998; Guzzetti et al., 2002; Dorren et al., 2004).

When applying repeatedly the current jump-rebound mod-
ule on a simplified slope with a constant slope angle and con-
stant coefficients of restitution the rock velocity increases or
decreases exponentially (Eq. 2). The actual values of the ve-
locity increment or decrement per jump-impact cyclefgain
mainly depends on slope angle and the values of the specific
coefficients of restitution.
vi+1

vi

= fgain= const (2)

fgain = relative gain/loss in velocity per jump [−], vi = start-
ing velocity of the ith jump [ms−1].

The velocity reached at thei-th jump is proportional to
fgain raised to the power ofi (Eq. 3). Maximum rebound
height and jump length are proportional to the squared veloc-
ity and can therefore be estimated by Eqs. (4) and (5). Jump
angles are constant and depend on slope angle and the ratio
of the coefficients of restitution. Due to the exponential be-
havior, trajectories may start with a long series of very short
jumps and a slow velocity gain but eventually reach unreal-
istic velocities and rebound heights if the slope is only long
enough.
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vi ∼ f i
gain (3)

Hi ∼ f 2·i
gain (4)

Di ∼ f 2·i
gain (5)

vi = starting velocity of thei-th jump,fgain= relative velocity
gain/loss per jump [−], Hi = rebound height fori-th jump
[m], Di = jump length (planimetric) fori-th jump [m].

However, this is in contrast to empirical evidence about
real rockfall trajectories. For instance, on steep sites rocks
typically gain energy very quickly and reach maximum ve-
locity after a short distance (e.g. Dorren et al., 2005; Jahn,
1988). Furthermore, reported rebound heights usually do not
exceed 2 m to 4 m while simulated rebound heights are much
higher (e.g. Dorren and Berger, 2006; Stoffel et al., 2006;
see also Fig. 3). Re-inspection of the model formulations fo-
cused on the amount of energy that is lost during rebound.
Conceptually, the loss depends on the characteristics of the
contact process itself and the amount of energy gain during
the flight phase, which in turn is strongly influenced by the
jump angle after rebound.

The rebound process is characterized as an elasto-plastic
contact in many studies (e.g., Pfeiffer and Bowen, 1989),
with elastic boulder response and plastic deformation of
softer ground material. Johnson (1985) proposed to extend
the widely applied point-like contact concept to plastic reac-
tion by reducing the coefficients of restitution with increasing
velocity proportional tov(−0.25) to account for deformation
work, elastic wave propagation and fracturing during impact
(Eq. 6).

r = k ·v
−

1
4 (6)

r = coefficients of restitution (normal and tangential) [−], k

= scaling factor [−], v = impact velocity [ms−1].

This relationship is supported by investigations of elasto-
plastic contact reaction (Wu et al., 2003, 2005; Hayakawa
and Kuninaka, 2003; Heidenreich, 2004). Similar relation-
ships are also found in studies based on field data from rock
slopes (Wu, 1985; Pfeiffer and Bowen, 1989; Pfeiffer et al.,
1993). The model extension by Johnson (1985) results in
increased energy dissipation at high velocities, which is in
agreement with field observations (e.g. Dorren et al., 2005;
Jahn, 1988). However, rock velocity does not affect the jump
angle after impact. Pfeiffer and Bowen (1989) and Pfeiffer
et al. (1993) developed separate scaling factors forrn and
rt from field data causing both coefficients of restitution to
decrease with increasing impact velocity. This concept re-
sults in both a pronounced energy dissipation and slightly
lower jump angles at high impact velocities. This is in ac-
cordance with Zinggeler (1989) and Heidenreich (2004) who
found for elasto-plastic contacts no strict geometric relation-
ship between impact and jump angles due to various influen-
tial factors such as friction or material strength.

3.2 Model improvement

3.2.1 Rebound algorithm

Based on the analysis of the original rebound model as pre-
sented above the contact model was extended following the
proposal by Johnson (1985) as it refers to velocity as the
most influential parameter of the jump-rebound cycle (Eq. 6).
Generally, this approach is supported by many studies over
various materials and settings (Wu, 1985; Wu et al., 2003,
2005; Hayakawa and Kuninaka, 2003; Heidenreich, 2004).

While still applying the literature values for impact ve-
locities below 10 ms−1, both the normal and the tangential
coefficients of restitution were reduced at higher velocities
according to Eqs. (7) and (8). This threshold was chosen be-
cause values for coefficients of restitution are usually based
on rebound field experiments with rock velocities of about
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10 ms−1 or below (Broili, 1973; Azzoni and de Freitas, 1995;
Chau et al., 2002).

r =

{
v <= 10 ms−1

: rliterature

v > 10 ms−1
: k ·v

−
1
4

(7)

k = rliterature·10
1
4 (8)

rliterature= reported coefficient of restitution in literature (tan-
gential and normal); see Tables 1 and 2 [−], r = resulting co-
efficient of restitution (tangential and normal) [−], k = linear
factor,v=impact velocity [ms−1].

Furthermore, the calculation of jump angles after rebound
was modified. The analysis of the jump-rebound cycle al-
ready indicated that the geometric approach to calculate the
jump angle may not be sufficient to reliably represent the
complex processes during actual rebounds. The real-size
rockfall experiments from Vaujany provided data on rock ve-
locity after rebound and rebound height for a series of indi-
vidual jumps on the upper slope of the unforested Site 1. Us-
ing this information for each of these jumps the jump angle
after rebound was back-calculated. A power function (Eq. 9)
was fitted to back-calculated rebound angle and rock velocity
data (compare Fig. 5).

The updated rebound model uses this relationship to cal-
culate the jump angles after each rebound. This approach
aims at providing realistic jump angles while preserving the
ability to consider the dampening characteristics of different
surface types via the coefficients of restitution.

αslope= k ·v
f

0 (9)

αslope= jump angle after rebound (relative to slope) [◦], v0 =
velocity just after rebound [ms−1], f = empirical exponent
[−0.74],k = empirical factor [80].

After implementing these modifications a second set of
simulations were run. Simulated velocities and rebound
heights, as well as the distribution of jump lengths were
much closer to observed values. However, the simulated dis-
tribution of run-out distances deviated still substantially from
observations (Fig. 4). Particularly the high frequency of stops
in the middle section of the unforested Site 1 in Vaujany (Sec-
tion B in Fig. 1) was still not satisfactorily captured by the
improved model. This section, where almost one third of the
rocks stopped despite high rock velocities, is characterized
by the presence of debris large enough to act as obstacles.
We concluded that rocks are stopped randomly by obstacles
on the surface, a process which is not accounted for by the
standard rebound algorithm.

3.2.2 Stopping algorithm

The hypothesis in improving model behavior was that the
probability for rock stops at high velocities depends on the
relation of (i) the size and distribution of obstacles on the
surface of a given surface type and (ii) the size of the falling
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Fig. 5. Relationship of rebound angle and velocity just after re-
bound for 63 recorded rebounds on the unforested Site 1 in Vaujany.

rock. To establish such relationships we developed a sepa-
rate software module external to the PICUS model and ran
a large number of simulations of boulder impacts on virtual
surfaces of block deposits. The virtual surface of block de-
posits is generated by imitating a natural deposition process
where added blocks tend to accumulate at already present
deposits. The characteristic sizes of the deposited blocks
are either pre-defined or drawn randomly from observed rock
size distributions. This process roughly resembles a rockfall-
related talus generation. After reaching a defined degree of
surface coverage the process is stopped (see Fig. 6 for an ex-
ample).

Starting with randomly distributed angles between 10◦ and
20◦ relative to the surface, i.e. a realistic range of impact an-
gles for real rockfall events, rocks are thrown from random
positions above the surface. A rock is considered “stopped”
if an obstacle at the surface is centrally hit. This is the case
when the angle between the hit point and the direction vector
of the falling rock is below 25◦ (Fig. 7). If no obstacle is hit
a simplified rebound is simulated assuming equality between
incoming and outgoing angle. Finally, the “stopping proba-
bility” for a certain combination of surface type and falling
rock size is defined as the ratio of stopped to total number of
events (Eq. 10).

pstop=
Nstopped

Ntotal
(10)

pstop = probability that a rock is stopped during ground con-
tact,Nstopped= number of rocks that were stopped,Ntotal =
total number of rocks thrown onto surface.

During trajectory calculations within the Rock’n’Roll
rockfall model Eq. (10) is used to calculatepstop for each
ground impact. If the kinetic energy of a falling boulder
exceeds zero, a uniform random numberRrs [0–1] decides
whether a falling rock comes to a halt (a boulder is stopped
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Fig. 6. Visualization of a geerated virtual surface used to calculate
stopping probabilities (Screenshot). Cover percentage of deposited
blocks = 30%.

Stopping impactNo impact

25°

Fig. 7. 2-D-scheme for calculating the stopping probability of a
rock (indicated by circles) during a single ground contact. The gray
arc indicates the sensitive 25◦ region for considering a collision as
a stop.

if pstop> Rrs). To that end the macro-roughness of the gen-
erated virtual surface types was visually compared to surface
types observed in the field by mapping personnel. First tests
yielded promising results and should be corroborated by an
extended quantitative comparison of simulated and observed
surface roughness in the future.

3.2.3 Vaujany

After implementing the new model algorithms the complete
set of simulations was repeated. For 3-D simulations – espe-
cially when the forest is considered explicitly – run-out dis-
tances are of particular interest. Regarding the simulated dis-
tribution of run-out distances the improved model was able to
reproduce the observed pattern well (Fig. 4). Especially for
the unforested Site 1 the effect of the rockstop submodule is
notable for the region between 225 m and 300 m (Section B
in Fig. 1). In this section the slope inclination is about 38◦,
comparable to the section above, but the surface is covered
with bigger blocks resulting in a higher probability of stop-
ping impacts.

Table 3 shows that mean and maximum velocities as well
as the average number of tree hits as simulated by PICUS
Rock’n’Roll match the observations well. While the model
only slightly underestimates the average rebound heights, the
simulated maximum rebound heights deviate still substan-
tially from observed values, especially on the forested Site 2.
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Fig. 8. Observed and simulated frequency of rocks in categories for
“number of tree hits per rock” for the forested Site 2 in Vaujany. The
simulated tree hits are represented by the mean value of 10 000 sim-
ulated rocks, the error bars indicate the minimum/maximum range
of 100 simulated rocks with 100 replicates each.

The average of the maximum rebound heights from 100 rep-
etitions of a simulation series with 100 rocks overestimates
the maximum rebound height by factor three. However, in
the majority of simulations, the maximum rebound heights
are substantially lower (see average value and value of the
90th percentile) and extremely high jumps were simulated
only on few specific spots along the slope. The general plau-
sibility of simulated rebound heights is also indicated by the
good match of the height at which trees were hit on Site 2
(Fig. 3, bottom left corner).

Figure 8 shows the distribution of the number of tree hits
per rock on the forested Site 2. The error bars indicate the ex-
treme values for 100 simulation series with 100 rocks each.
The simulated number of rocks that hit only one tree or no
tree at all is lower than the observed value, while the num-
ber of rocks that hit two to four trees is overestimated by the
model. A possible explanation for this deviation is that dur-
ing the Vaujany field experiment the forest especially near the
starting point was thinned out by previously released rocks,
thus reducing the likelihood of early tree hits.

The match of simulated mean and standard deviation of
jump lengths for the upper and lower part of the slopes im-
proved considerably with the revised model (Fig. 3). Com-
pared to results of the original model version the simulated
jumps of the updated model in the upper part of the slope are
now longer while the jump lengths in the downslope sections
are shorter and exhibit less variation (Fig. 3).

3.3 2-D trajectories in Steg and Bad Ischl

The 2-D trajectories are single events which are compared
to the range of outcomes from a stochastic model. The sim-
ulated run out distance in Steg with 453 m±9 m (standard
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Table 3. Summary of observed and simulated (with improved rebound algorithm) rockfall parameters for both sites in Vaujany. The columns
denoted withN = 100×100 present the mean and standard deviation of 100 simulation series with 100 rocks each.

Site 1 (unforested) Site 2 (forested)
Parameter Unit Observed Simulated Simulated Observed Simulated Simulated

N=100 N=10 000 N=100×100 N=100 N=10 000 N=100×100

average of maximum ms−1 15.4 17.3 17.2±0.57 11.7 12.9 12.8±0.34
trajectory velocities

90th percentile of max. ms−1 – 25.5 25.1±0.84 – 17.1 17.1±0.81
trajectory velocities

maximum velocity ms−1 30.6 32.7 29.5±1.24 24.2 29.5 23.1±1.95

mean velocity ms−1 11 9.4 9.6±1.5 8 6.8 6.7±1.2

mean number of tree – – – – 2.8 2.8 2.9±0.19
hits per falling rock

maximum rebound m 8 13.8 10.33±1.27 2 7.9 5.8±1.05
height

90th percentile of m – 6.4 6.5±0.6 – 2.2 2.1±0.4
max. rebound heights

mean rebound height m 1.5 1.2 1.1±0.2 1 0.8 0.8±0.2
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Fig. 9. Simulated and observed jump lengths for the profiles in Steg (left) and Bad Ischl (right). Dots denote observed jump lengths. The
bold line indicates mean jump length and the dashed line the minimum and maximum jump length of 10 000 simulations.

deviation) is in agreement with the observed value of 441 m.
In Bad Ischl more than 99.9% of the simulated rocks
reach the rockfall net with an average kinetic energy of
349 kJ±132 kJ (90th percentile=570 kJ). Keeping in mind
the stochastic nature of observed jump lengths resulting from
a singular rockfall event, the observed jump lengths fit well
within the distribution of simulated jump lengths (see Fig. 9).

4 Discussion

In this paper a comprehensive model validation experiment
with a 3-D rockfall and forest model was presented. Focus
of the validation was on the rockfall model. The study fea-
tures an iterative cycle of testing and improving the model
(e.g. Vanclay and Skovsgaard, 1997). A first set of simula-
tion runs at the sites in Vaujany indicated major deficiencies
of the initial model version with regard to simulated rock ve-

locities, rebound heights and run-out distances. Attempts to
improve the match of simulated and observed data through
calibration of the coefficients of restitution were not success-
ful. Based on the re-analysis of the rebound algorithm two
major changes in the rebound algorithm were implemented:
(i) an increased damping during ground impacts with increas-
ing rock velocity based on Johnson (1985), and (ii) a new
approach to calculate jump angles after rebound based on
empirical jump data. The effect of increased damping for
ground contacts at higher rock velocities due to a larger ef-
fect of plastic deformation is not only suggested by literature
but has been successfully implemented in existing rockfall
models (e.g. Pfeiffer and Bowen, 1989). While the complex
impact process is still not fully understood, the magnitude of
plastic deformation is assumed to depend on ground material
characteristics (mainly strength) and impact characteristics
such as impact angle and contact pressure. However, in the
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current study the relationship of velocity and the coefficients
of restitution is the same for all surface types.

Additionally, an empirical relationship to estimate jump
angles after rebound was derived. This modification resulted
in a more realistic model behavior but also in a weakened
physical foundation of the rebound algorithm. We used spe-
cific data from one of the Vaujany experimental sites itself,
thus rendering the Vaujany data no longer an entirely inde-
pendent data set for model evaluation. However, detailed
empirical data on rockfall processes is sparse, and excluding
the Vaujany data from model development deemed unduly
restrictive. We are aware that the empirical relationship of
velocity and jump angle based on limited data from one spe-
cific site is not a generally valid relationship. However, the
modified model variant combining Johnson’s approach with
the empirical relationship worked well for both sites in Vau-
jany as well as for the two trajectories in Steg and Bad Ischl.
Considering the quite diverse conditions represented by these
four sites we conclude that the chosen approach has some
potential which should be further explored. More empirical
data on individual jumps from different surface types are re-
quired to test the generality of the approach and to provide
insight into the sensitivity of simulated trajectories to vari-
ation in the rebound algorithm. In general, the necessity to
calibrate rockfall models for each individual site and applica-
tion may severely hamper model applicability. For instance,
for assessments at larger scales such calibration procedures
are very likely not feasible due to missing calibration data,
thus calling for generalizable approaches.

A major model improvement was the implementation of a
probabilistic stopping algorithm for falling rocks. Based on
a conceptual model of the interaction of a falling rocks with
boulder obstacles on the ground virtual data were generated
with an external software module to derive a general meta
model of the process. The advantage of the presented ap-
proach is that the virtual surface types used to establish stop-
ping probabilities for falling boulders of specific size can be
compared to surface types used for site mapping activities.
Thus, a direct link can be established between input parame-
ters used in generating the virtual surface types and observ-
able data (e.g., block cover percentage, size distribution of
deposited blocks).

Generally, the updated model showed good agreement
with observed rockfall parameters, particularly with regard
to rock velocities, jump length and run-out distances. Worth-
while to note is the persistent overestimation of maximum
rebound heights for the Vaujany simulations despite the rel-
atively small range of additionally applied variability in the
tangential coefficient of restitutionrt . However, especially
on the forested Site 2 large rebound heights occurred on
only few spots along the slope. A possible reason is that
Rock’n’Roll calculates jump angles relative to the slope an-
gle at the impact point. Large rebound heights can thus arise
from an overestimated variability of the inclinations along
the slope as a result from artifacts of the digital elevation

model (Agliardi and Crosta, 2003) or the transformation to a
TIN. A possible further model extension would be the con-
sideration of soft impact with penetration of the boulder into
the ground on loose soils and scree deposits. This feature
could be implemented by smoothing the point inclinations
along an estimated contact zone.

Both single event 2-D trajectories were contained within
the range of simulated stochastic outcomes. Compared to
comprehensive 3-D data sets as available in Vaujany, 2-D
profiles from post-hoc analysis of individual rockfall trajec-
tories provide less opportunity to explore and validate model
behavior. However, they proved to be a readily available and
efficient complementary element in our model evaluation.

In the presented validation experiments the forest dynam-
ics model was deactivated as the rockfall processes featured
in the evaluation data took place within one time step of the
forest model. As already outlined in Woltjer et al. (2008)
a fully coupled forest and rockfall model with feedback of
rock hits on the vitality and subsequently stability and mor-
tality risk of trees is conceptually possible within this frame-
work. Based on data of the Austrian National Forest In-
ventory Vospernik (2002), for instance, showed that Norway
spruce trees with rockfall wounds had an increased proba-
bility of death. However, rock fall frequency as a prereq-
uisite for such an approach cannot be readily inferred from
standard data sources, limiting a fully coupled simulation ap-
proach.

5 Conclusions

The current model version produces reliable results over a
wide array of conditions for rockfall processes as well as for
forest dynamics (e.g. Seidl et al., 2008, 2005). It can thus be
applied to analyze protective effect of forest vegetation over
time periods of several decades under natural forest develop-
ment or different forest management regimes. The rockfall
model itself is designed for high computing performance and
is able to calculate approx. 1000 trajectories per second (us-
ing standard hardware from 2007) which allows to efficiently
extend the spatial scale of application. The coupled rockfall
and forest model can simulate an area of about 40 hectares
which is sufficient for most protection forest management
projects. The evaluation results presented in this contribu-
tion generally support the approach and increase the credi-
bility of the rockfall module. Hence, we are confident that
the presented model can be used for operational assessments
of the protective function of forests against rockfall.
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