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Abstract. The growing concern for loss of services once
provided by natural ecosystems is getting increasing atten-
tion. However, the accelerating rate of natural resources de-
struction calls for rapid and global action. With often very
limited budgets, environmental agencies and NGOs need
cost-efficient ways to quickly convince decision-makers that
sound management of natural resources can help to protect
human lives and their welfare. The methodology described
in this paper, is based on geospatial and statistical analysis,
involving simple Geographical Information System (GIS)
and remote sensing algorithms. It is based on free or very
low-cost data. It aims to scientifically assess the potential
role of vegetation in mitigating landslides triggered by earth-
quakes by normalising for other factors such as slopes and
distance from active fault. The methodology was applied to
the 2005 North Pakistan/India earthquake which generated
a large number of victims and hundreds of landslides. The
study shows that if slopes and proximity from active fault are
the main susceptibility factors for post landslides triggered
by earthquakes in this area, the results clearly revealed that
areas covered by denser vegetation suffered less and smaller
landslides than areas with thinner (or devoid of) vegetation
cover. Short distance from roads/trails and rivers also proved
to be pertinent factors in increasing landslides susceptibility.
This project is a component of a wider initiative involving
the Global Resource Information Database Europe from the
United Nations Environment Programme, the International
Union for Conservation of Nature, the Institute of Geomatics
and Risk Analysis from the University of Lausanne and the
“institut universitaire d’́etudes du d́eveloppement” from the
University of Geneva.
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1 Introduction

Overexploitation of natural resources and deforestation is
one of the main triggers for the observed increase in landslide
disasters along with increase in population exposure (Nadim
et al., 2006). While timber production, grazing or woodfuel
collection are activities supporting livelihoods, their impact
on vegetation cover needs to be addressed, as forests are be-
ing harvested, converted to crop land or pasture at an ac-
celerating pace. Current deforestation reaches 13 millions
ha per year (Fao, 2006). Conversely, restoration of vege-
tation coverage can be a cost-effective method for risk re-
duction. Planting mangroves for tropical cyclones protec-
tion revealed to be seven fold cheaper than dike maintenance,
while also providing secondary benefits for local livelihoods
(IFRC, 2005).

The Hyogo Framework for Action (HFA) “encourages the
sustainable use and management of ecosystems, [for] re-
ducing the underlying risk”(UNISDR, 2005). To achieve
this goal, both local authorities and international decision-
makers need to adopt improved environmental policies. Yet,
convincing people to change their practices demands tan-
gible evidence and clear examples of sound environmen-
tal management. Post-disaster situations might provide a
favourable impetus to bring new concepts and to avoid re-
building risk during the reconstruction phase. There is a need
for a multiplication of scientific evidence and thus for devel-
oping simple methods allowing solid scientific assessments.
Outputs from this quantitative analysis were used in an in-
terdisciplinary study for disaster risk reduction (Sudmeier-
Rieux et al., 2008). It explored the relation between land
use factors, such as deforestation, grazing, road building,
etc. on the frequency of landslides and coping strategies de-
veloped by the population. It was applied and tested on
the area affected by the earthquake that hit North Pakistan
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and India on 8 October 2005. The epicentre was located
at 34.493◦ N, 73.629◦ E and had a recorded magnitude of
7.6 Mw on Richter scale (USGS, 2006). It devastated a
large stretch of the region, killing between 74 647, injuring
134 622 and leaving 5.15 million homeless and resulted in
an economic loss evaluated at 6.2 billion US$ (CRED, 2009).
While impressive, these figures fail to capture the level of de-
spair of the surviving population. The heaviest damage arose
in the Muzaffarabad area and Kashmir, where entire villages
were destroyed. More than 30% of the victims were killed
by landslides (Petley et al., 2006). More than 2400 land-
slides were identified by remote sensing techniques (Sato et
al., 2007) following this earthquake. The biggest individual
landslide triggered by the Kashmir Earthquake 2005 was the
68 millions m3 Hattian Bala rock avalanche that killed about
1000 people (Dunning et al., 2007).

Understanding why landslides claim such a high death
tolls is thus an important task. Not only to identify the po-
tential future slope failure, but also to see if portion of past
susceptibility can be attributed to human activities. This is
particularly relevant in this context, as five months before
the October 2005 earthquake, an IUCN-Pakistan report high-
lighted the risk “from a possible human catastrophe due to
the growing danger of landslides that was haunting the lo-
cals owing to heavy constructions, ruthless deforestation and
massive quarrying.” (IUCN, 2005).

Landslides are complex hazards requesting the collection
of many different parameters to produce susceptibility maps:
slopes, lithology, identification of recent deforestation, prox-
imity from roads and presence of triggers (such as heavy pre-
cipitations or seismic activities) are the most commonly used
factors in landslides modelling (Guzzetti et al., 1999; Gorse-
vski et al., 2001; Vanacker et al., 2003; Ayalew and Yamag-
ishi, 2005).

Guzzetti et al. (1999) describe five main categories of
techniques for mapping landslides susceptibility (geomor-
phological hazard mapping, analysis of landslides invento-
ries, heuristic or index based methods, functional, statisti-
cally based models, geotechnical or physically based mod-
els). They can be gathered in two broader categories: quali-
tative and quantitative (Ayalew and Yamagishi, 2005).

The most common types of qualitative methods simply use
landslide inventories (Ayalew and Yamagishi, 2005). Land-
slide inventories attempts to predict future patterns of slope
failure by preparing landslide density maps (Guzzetti et al.,
1999).

As part of a preliminary study (Sudmeier-Rieux et al.,
2007), a first landslide inventory was undertaken by com-
puting the landslides density on different landcover, slope
classes and geological formations.

It showed for instance that 57% of landslides occurred
in Murree geological formation. Although at first glance it
seems that such geological is highly susceptible to landslide,
this is less evident when knowing that such formation ac-
counted for 52.3% of the area. Qualitative methods are use-

ful in preliminary tests, but are only of interest if the ratio of
percentage of landslides over percentage of coverage of the
selected feature is showing significant over (or under) rep-
resentation. In the case of the Murree geological formation,
such ratio is about 1.1 (57/52.3). This is not to say that such
geological formation has a neutral role, but only that this is
not statistically relevant.

Looking at landcover was more interesting. While forests
cover about 45% of the study area, it includes only 17% of
total landslides, ratio = 0.36 (17/45), so forest are under-
represented. Deforested and grazing areas covers 42% of the
study area, but includes 54.8% of total landslides, ratio =
1.3 (45.8/42), so areas with no or low vegetation density are
over-represented. However this can easily be a fluke corre-
lation as one might argue that forested areas may potentially
be more located on gentler slopes, or areas further away from
fault line or on different geological formation.

Quantitative methods overcome the issue of potential in-
terconnectivity between the susceptibility factors. The most
robust method is based on a deterministic approach. This
consists of an engineered evaluation of slope instability
based on exhaustive collection of relevant data. Such ex-
ercises are very time consuming and costly. Deterministic
approaches request comprehensive local assessments and are
thus usually conducted over small areas (Ayalew and Yam-
agishi, 2005) and one might add: with high financial values
given the resources needed.

For large areas, statistical quantitative approaches are
more appropriate. In this category, logistic regression and
discriminant analysis are the most frequently chosen models
(Guzzetti et al., 1999; Brenning, 2005). This requests first to
identify past landslides (usually using remote sensing) and
then prepare map layers for each potential susceptibility fac-
tors using GIS techniques (Guzzetti et al., 1999; Ayalew and
Yamagishi, 2005; Brenning, 2005; Vanacker et al., 2003; Coe
et al., 2004). This allows for the identification and the esti-
mation of the relative contribution of the instability factors
and the cartography of different hazard degree (Guzzetti et
al., 1999).

Such multiple regression analysis associated with extrac-
tion of parameters using GIS, was already used for highlight-
ing the role of deforestation in landslides (e.g. Vanacker et
al., 2003). In their study, Vanacker et al. extracted slopes, as-
pect, distance to valley and type of landcover. They also used
different sets of aerial photos taken at different years to look
at the role of deforestation (and time since deforestation) for
landslides susceptibility. They concluded, that in their area
of study, the overall susceptibility of slope movement was
highly dependent on recent land-use changes. Vegetation
can reduce landslide susceptibility (both shallow and deep
landslides) by reducing water content in the soil (Popescu,
2002) or may reduce shallow landslides with the mechanical
role of roots in anchoring the soil. However, vegetation may
also destabilize the forces by adding weight and acting as a
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surcharge as well as by wind forces on vegetation exposed
(Popescu, 2002).

Remote sensing techniques are useful for estimation of
crustal deformation using either passive sensors (Avouac et
al., 2006) or radar imagery. A remarkable study (Sato et al.,
2007) used Synthetic Aperture Radar (SAR) images from
ENVISAT revealing a maximum six-meter uplift north of
Muzaffarabad. In the same study, landslide detection per-
formed by comparing a pair of pre- and post-event SPOT-5
images plotted over a Digital Elevation Model (DEM). Sato
et al. showed that a majority of landslides (63.3%) occurred
on slope steeper than 30 degrees and that gentler slopes were
also affected by landslides when closer to active faults. How-
ever, they found that this was not systematic, as large-scale
slope failures also occurred at slopes less than 30 degrees at
a longer distance. Steeper slopes located further away from
the active faults were not necessarily more affected. Slope
and distance from active faults are thus only part of the story.

In order to highlight the potential role of vegetation in
mitigating slope failure, this current study builds on simi-
lar methodologies developed for different hazard types (Pe-
duzzi et al., 2002; Chatenoux and Peduzzi, 2007). It uses
multiple regressions to normalise geophysical and geograph-
ical parameters (such as slopes, distance from active fault,
distance from rivers) to highlight other parameters related to
human activities (presence of roads, vegetation removal). A
logistic regression with stepwise variable selection proved to
be adequate for landslide susceptibility modelling (Brenning,
2005). In order to ensure easy reproduction even for low-
budget institutions, the research is based on free or low-cost
data. It is thus based on published material and free global
datasets, with the sole acquisition of a (low-cost) 30 m DEM
derived from ASTER satellite sensor. This paper describes
how spatial and statistical analysis using remote sensing and
GIS techniques were applied (see Table E1 for the list of soft-
ware used).

One of the key inputs consisted of the use of results from
two previous assessment made by theService Regional de
Traitement d’Image et de Téléd́etection(SERTIT) and the
National Engineering Services of Pakistan (NESPAK) which
identified post-disaster landslides using satellite imagery.
Both institutes kindly provided the two sets of detected land-
slides. To study which parameters are potentially linked with
landslide susceptibility, a series of potential susceptibility
factors were extracted using GIS techniques (slope variation
and steepness, vegetation density, and distance from epicen-
tres/active fault, rivers, roads or trails). Satellite imagery and
simple remote sensing computation were also used to eval-
uate vegetation density. The Normalised Difference Vegeta-
tion Index (NDVI) is commonly used as a proxy for vegeta-
tion density (Tucker, 1979). It was computed and statistical
regressions were run to identify potential susceptibility fac-
tors associated with observed slope failures. Once identified,
the identified factors were introduced into the GIS to provide
a landslide susceptibility map.

2 Data collection

2.1 Selection of the study area

The study area is a 60 by 60 km square (3600 km2) delim-
ited by the choice of the ASTER DEM covering Muzaf-
farabad and the Neelum valley (the bounding coordinates
are: 73.23 E, 34.65 N, 73.86 E, 34.56 N; 73.72 E, 34.02 N;
73.09 E, 34.11 N). It lies in North Pakistan and India with
more than half over the disputed territory of Jammu Kashmir
(sovereignty status still unsettled). It includes the largest epi-
centre of 7.6 on Richter scale in the north of the study area,
while numerous replicas are just outside in the northeast (see
map of the study area in Fig. 1).

The altitudes range between 552 m and 4476 m (average
around 1700 m) in this complex pattern featuring a rugged
landscape. The rough relief of this mountainous area might
be of concern for remote sensing processes, due to the areas
in the shadow.

To overlay the different layers of information, the data
were all projected in UTM 43 N (datum: WGS 1984). The
full list of data sources is provided in Table A1.

2.2 Hypothesis and data sources

The dependant variable to be explained is the size of land-
slides. The original data on detected landslides were ob-
tained through the Humanitarian Information Centre for Pak-
istan (HIC) but generated by two different offices: (SERTIT)
based on 5-m SPOT-4 images and from the National Engi-
neering Services of Pakistan (NESPAK) at a lower resolu-
tion. To explain the variation in landslide size, several hy-
potheses were made. Assuming that distance from active
fault is an important factors, the Muzaffarabad and Tanda
fault lines were manually digitalized (R. Klaus internship
at UNEP/GRID-Europe) from a map extracted from Nakata
et al. (1991) at a scale of 1:100 000. From this dataset the
distance from the active fault was computed for each pixel.
Epicentres were geo-referenced based on latitude/longitude
information retrieved from the Advanced National Seismic
System (ANSS) composite catalogue, the Northern Califor-
nia Earthquake Data Center (NCEDC); The ANSS com-
posite catalogue. Distances from epicentres (and replicas)
were computed for three categories of epicentres: the first
one includes epicentres comprised between 5.5 and 7 MW
on Richter scale, the second one for epicentres between 7
and 7.5 MW, the last one consisting of the main epicentre at
7.6 MW.

Another hypothesis was made that the presence of roads
and trails could destabilise the slopes by either allowing in-
filtrations or by destabilising the balance slope of the ma-
terial. Trails for pedestrians and cattle were distinguished
from roads for cars and trucks. The data were provided
(and digitalized) by the United Nations Joint Logistics Centre
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Fig. 1. Map of the study area (the boundaries and names shown on this map do not imply official endorsement or acceptance by the United
Nations or by the author).

(UNJLC). Based on this dataset, distances from nearest roads
and trails were computed for each pixel using GIS.

On the satellite image, numerous landslides appear to be
located close to (or touching) rivers. The files for rivers were
downloaded from the Data Repository of the Geographic In-
formation Support Team (GIST). Distances from rivers were
computed for each pixel. Soil types are also a central element
for landslides susceptibility. At this stage, the soil coverage
in this region is still a major gap in the analysis that needs to
be bridged.

A main hypothesis is that slope is the primary causal fac-
tor of landslides (including debris flows, blocks fall and land-
slides). Two DEM were used. The Shuttle Radar Topogra-
phy Mission (SRTM) version 3 (at 90 m spatial resolution)
was obtained from the CGIAR Consortium for Spatial In-
formation (CGIAR-CSI) and the ASTER (at 30 m spatial
resolution) purchased from United States Geological Survey
(USGS). These datasets allowed the computation of slopes
for each pixel and to derive the maximum, average and stan-
dard deviation of slopes within each landslide).

Finally, the aim of the study was to ascertain the role of
vegetation in relation with landslides. A pre-event satellite
image from Landsat ETM sensor was used (image path: 150,
row 36 from 7 October 2002). It was obtained from Land-
sat.org, Global Observatory for Ecosystem Services, Michi-
gan State University. A normalise difference vegetation In-
dex (NDVI) was computed. This combination of recorded
electromagnetic reflectance in near Infra-red (nIR) and red
(Red) wavelengths is highly correlated with photosynthesis
activity, hence with density of vegetation (Tucker, 1979). Be-
ing a complex ratio it also reduces the problem of shadows
produced by topographic effects. This was particularly rele-
vant over this mountainous area. The ratio is computed using
the equation:

NDVI =
(nIR−Red)

(nIR+Red)
(1)

Where: NDVI: Normalized Difference Vegetation Index;
nIR: electromagnetic reflectance in Near Infra-Red (not
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equal to zero); Red: electromagnetic reflectance in Red (not
equal to zero).

3 Methodology

3.1 Role of vegetation cover and landslides

To understand why some areas led to large landslides while
others suffered smaller landslides, some basic tests using cor-
relation matrix between variables and area of landslides, or
3-D surfaces can provide useful hints. However, to better un-
derstand the context, multiple regressions analysis should be
run. The size of landslide was set as the dependant variable
for the magnitude of landslides. Prior to testing whether vari-
ations in vegetation cover density have an effect on the size
of detected landslides, standardisation of other parameters is
needed. A hypothesis was made that slope failures, triggered
by earthquakes, were related with slopes, type of soil (not
tested due to lack of appropriate data), proximity from active
fault or epicentres and proximity from rivers.

Once the geophysical and morphological parameters re-
lated to slope failure are identified, proximity from trails (or
roads) as well as role of vegetation cover can be introduced
to see what are the potential mitigation or enhancing effects
of these features.

The dependant variable was set to be the size of landslides.
Using the post-event detection of landslides by SERTIT and
NESPAK (further corrected by UNEP/GRID-Europe as ex-
plained in Sect. 3.2), the area (in m2) of each landslide was
computed using GIS. This variable was then transformed by
computing the natural logarithm (LN) of the size.

LSsize=αV a
1 ·βV b

2 · ... ·γV i
n (2)

3.1.1 Factors to be tested

Other factors were extracted using GIS techniques and asso-
ciated with each landslide. Examples of variables extracted
are provided in Table 1 while the full list of tested vari-
ables (including transformed variables) is provided in the Ta-
ble B1.

Transformation and normalisation of variables were
needed because the links between landslide area and other
contextual parameters are not necessarily linear and statisti-
cal linear regressions request variables that follow a normal
distribution. In order to see how these variables behave, a
visual test using histograms and scatter plots was performed
and variables were transformed accordingly (as explained be-
low).

3.2 Data preparation

The list of data sources is provided in Table A1. The prepa-
ration of data involved:

3.2.1 Improving the recorded landslides data

The recorded landslides from both SERTIT and NESPAK,
did not take into account the trans-edge or trans-river ef-
fect. In other words, two landslides having the same origin
at a mountain edge, or two landslides ending their courses in
front of each other at the bottom of a valley, were recorded by
SERTIT or NESPAK as one landslide. To correct for these is-
sues, manual transformation of these two datasets were made
(thanks to the work of Rafäel Klaus as part of his internship
at UNEP/GRID-Europe).

3.2.2 Computation of distances

Distances were computed for the following features: roads,
trails, active fault and epicentres. This operation was per-
formed in a GIS using a raster of 30 m×30 m, where each cell
includes the minimum distance to one of the selected feature
as well as distance between the centre of each landslide and
the selected features.

3.2.3 Computation of NDVI

In Fig. 2 one can see that the computation of the NDVI
strongly reduced the shadows produced by the relief. In the
right image, low NDVI values are displayed in blue and in-
clude ice, snow, rivers and lakes, while green reflects the high
NDVI values produced by dense vegetation.

3.2.4 Slopes

Slopes were computed using GIS, based on both ASTER
(30 m×30 m) and SRTM (90 m×90 m) DEM datasets. The
SRTM covers a larger area (in fact the whole world is avail-
able), whereas the ASTER DEM purchased, “only” covers
3600 km2. If the 90 m resolution is sufficient, an extrapola-
tion to a larger area using SRTM would be possible.

3.3 Data extraction, transformation and integration

3.3.1 Values extraction

By superimposing the detected landslides over the different
layers of information, it was possible, for each individual
landslide, to compute the minimum distance (or maximum,
average. . . ) from a specific feature (such as river, trails,
roads, active fault, epicentres) or the maximum slope (aver-
age, standard deviation and square of maximum slope were
also computed and extracted). The same process was ap-
plied to extract the minimum, maximum and average value
of NDVI.

3.3.2 Transformation of variables

Prior to developing the statistical analysis, the variables need
to be selected and transformed to ensure that they follow a
normal distribution. The link between landslide area and
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Table 1. Examples of variables extracted for each detected landslide.

Raw data Derived variables Type of values recorded for each landslide

Detected Landslides Area Area, maximum width and length.
DEM Slope Elevation difference, Maximum slope, average slope, standard deviation.
Epicentre locations Distance from epicentres Minimum distance between either edge of the landslides or centre of the

landslide area.
active fault Distance from fault line Minimum distance between either edge of the landslides or centre of the

landslide area.
Rivers Distance from river Minimum distance between either edge of the landslides or centre of the

landslide area.
Road and trails Distance from road and trails Minimum distance between either edge of the landslides or centre of the

landslide area.
Landsat ETM+ image NDVI Maximum, minimum and average NDVI value.

 11
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other factors is not necessarily linear, so a visual interpre-
tation followed to identify whether some functions can be
applied to improve the link with landslide area. For exam-
ple, in a scatter plotlandslide areasseemed to present a link
with the square ofmaximum slope. This function was hence
computed formaximum slope.

The variables were transformed by taking the natural loga-
rithm (LN) of scalar or, in some cases, the LN of transformed
values. Transformations already proved to be efficient in pre-
vious studies (Peduzzi et al., 2002) (Chatenoux, 2007). For
variables ranging between 0 and 1 (e.g. percentage, or NDVI)
Eq. (3) was applied.

V ′

i = LN

(
Vi

1−Vi

)
(3)

WhereVi is the variable to be transformed andV ′

i is the trans-
formed value.

The choice of logarithmic regression was made to reflect
the interactivity between the different parameters, given the
multiplicative effect on each other (an addition of LN being
a multiplication of the exponents). This is believed to be
pertinent, given the complexity of sites where one factor can
mitigate or enhance another.

All the 36 variables (see Table B1) computed and/or trans-
formed for all the individual landslides were placed in a
database and then introduced into statistical software for
multiple regression analysis.

3.3.3 Groups of independent variables

A correlation matrix (see Table C1) was computed between
all the variables and used to discriminate variables that were
too correlated to be taken together in regression analysis.
Groups of independent variables were generated, each one
corresponding to a specific hypothesis, which was tested
by running multiple regression analysis. The selection of
the most relevant hypothesis was based on relevance (p-
level <0.05) and maximisation of percentage of variance
explained (R2). This process allows the identification of
combinations of parameters that best explain the landslide
area and thus confirms or rejects the hypothesis on the poten-
tial role of the different environmental and geomorphologic
features.
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Fig. 3. Landslides area versus slopes and distance from active fault.

4 Statistical results

Hypothesis can be quickly tested using correlation matrix be-
tween variables and area of landslides. In some cases, plot-
ting observed data in 3-D surfaces can provide useful hints
to show correlation of landslides area with two independent
variables. For example Fig. 3 shows that the landslides area
decreases sharply when slopes decrease (until 30◦) or when
distance to active fault increase. It also shows that below
a slope of 30◦, landslides area may increase when located
closer to active fault. This is in line with findings provided
by Sato et al. (2007).

Similarly, the effect of vegetation density can be quickly
tested by looking at 3-D surface between landslides area,
maximum slope and a proxy of vegetation density (NDVI).
Figure 4 highlights the role of vegetation density, where
NDVI is inversely correlated with the Ln of landslides area.
However, 3-D plots can only display the link with two ex-
plaining variables and some of the modulations viewed in
Figs. 3 and 4 suggest that other variables play a role. For ex-
ample, the increase in landslide area at gentle slope and high
vegetation. Could it be along rivers? To really address the
weight of each parameters and the potential multiplicative
effect of variables, a multiple regression analysis is needed.

4.1 General model (all landslides considered – except
outliers)

The multiple regressions analysis (Table 2) selected the fol-
lowing variables being associated with the landslides area
(see Appendix F for further details on how to read the in-
formation provided in the table). The regression coefficients
(third column) represent the weight that should be multiply-

Fig. 4. Landslides area versus slopes and vegetation density
(NDVI).

ing each independent variable to get the predicted dependent
variable.

The expected LN of landslide area from this model would
be:

LN LsArea= −0.125D river minLn+0.206D trail avLn
−0.246D fault minLn
−0.878NDVIt avLn+0.263Slopemax2Ln
+7.913

However, a higher weight do not necessarily implies a higher
degree of influence. This is because the units are not the
same between the variables as they were not standardized
to a mean of 0 and a standard deviation of 1. The magni-
tude of the “Beta” coefficients provide information on the
relative contribution of each independent variable. From the
“Beta” coefficient, the percentage of contribution to landslide
area can be derived (see column “contribution”.Slopesand
Distance from active faultwere both explaining most of the
variance (about 35% each), the next oneDistance from river
explaining much less (about 12%),NDVI anddistance from
trail explain about 9% each.

Except for trails, all the signs are according to the com-
mon sense (the steeper the slope, the larger the landslides, the
smaller the distances to active fault, river, the larger the land-
slides and the smaller the NDVI the larger the landslides).
The selection shows a high degree of confidence (p-level
much smaller than 0.05; the highest p-level (thus worse) is
associated with distance from trail with a value of 0.002,
hence 99.8% (1–0.002) probability that the selection of dis-
tance from trail is not due to random process. It is highlighted
has being significant, but calls for improvements.

The percentage of variance explained (R2) by the general
model reaches 61.3% (Pearson=0.78), bearing in mind that
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Table 2. Results from multiple regression analysis.

Variables Beta Coefficient p-level Contribution

Intercept 7.913 0.000000
D river minLn −0.180 −0.125 0.000013 12.13%
D trail avLn 0.128 0.206 0.001859 8.63%
D fault minLn −0.520 −0.246 0.000000 35.04%
NDVIt avLn −0.137 −0.878 0.001007 9.23%
Slopemax2Ln 0.519 0.263 0.000000 34.97%

r=0.78,R2=0.613, AdjustedR2=0.601,N=246, outliers = 16
Where:
Intercept Intercept value of the regression line
D river minLn Logarithm natural of minimum distance between landslides and river
D trail avLn Logarithm natural of minimum distance between landslides and trail
D fault minLn Logarithm natural of minimum distance between landslides and active
fault
NDVI t avLn Logarithm natural of average transformed value of NDVI
Slopemax2Ln Logarithm natural of maximum slopes as detected from ASTER

the variables have been transformed and expressed here in
logarithms. The total number of landslides considered for the
analysis is 280, 262 had valid information for the variables
studied. 246 cases were considered, excluding 16 outliers
(+2.0 sigma).

The correlation matrix (Table 3) between the explicative
variables shows no auto-correlations. Maximum slopes and
distance from active fault area already strongly correlated
with landslides area (0.505 and−0.533, respectively).

The scatter plot featuring predicted versus observed values
(Fig. 5) shows a relatively good fit; however it seems that two
groups can be identified with a gap between large landslides
areas and smaller one. Distance from trails has the opposite
sign as expected. This call for an improvement of the model
and testing separated processes.

4.2 Differencing landslides close and away from rivers

Numerous small landslides were observed along rivers (or
close to rivers). Larger landslides seem to be following dif-
ferent rules. Given that distance from river might not be rele-
vant for landslides away from rivers, a hypothesis was made
that landslides might be modelled using differentiated regres-
sions. Three different categories of landslides were made:
those touching rivers, those close to rivers (but not touch-
ing) and those away from rivers (at a distance greater than
100 m), this process was carried out using both Boolean con-
ditions and a (GIS) buffer of 100 m around rivers to intersect
with surrounding landslides.

4.2.1 Landslides away from river (minimum distance
>100 m)

The number of cases away from rivers is 98 (once exclud-
ing 3 outliers, with sigma>2.0). Percentage of variance ex-
plained is 54.0% (Pearson=0.73).

Fig. 5. Predicted size of landslides versus observed, scale in
Ln[m2].

Fig. 6. Predicted size of landslides versus observed: Landslides
away from rivers (>100 m), scale in Ln(m2).

The variables selected are as follows:

1. Slope (square of Ln maximum slope), positive sign.

2. Minimum distance from active fault (Ln), negative sign.

3. NDVI (Ln of transformed values), negative sign.

The level of significance is very high (all p-level much
smaller than 0.05), no auto-correlation suspected, the signs
are according to what was expected (see Table 4). Ac-
cording to the Beta coefficient the susceptibility factor most
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Table 3. Correlation matrix.

N=246 D river minLn D trail avLn D fault minLn NDVIt avLn Slopemax2Ln

D trail avLn 0.045
D fault minLn 0.105 0.035
NDVIt avLn 0.081 0.143 0.052
Slopemax2Ln −0.020 0.100 0.018 0.153
Ls areaLn −0.251 0.134 −0.533 −0.081 0.505

Where: Other factors as above mentioned and LsareaLn: Logarithm natural of landslides area

Table 4. Results from multiple regression analysis for landslides
away from rivers.

Variables Beta Coefficient p-level Contribution

Intercept 7.029 0.000000
D fault minLn −0.511 −0.219 0.000000 38.9%
NDVIt avLn −0.256 −1.540 0.000652 19.9%
Slopemax2Ln 0.541 0.373 0.000000 41.2%

r=0.732,R2=0.535, Adj.R2=0.520,N=98, outliers = 3

influencing the landslide area is slope (41.2%), followed by
distance from active fault (38.9%) and then NDVI (19.9%).

The distance from trails and the distance from rivers are no
longer selected by the model, which makes sense for rivers,
given the filters applied.

4.2.2 Landslides close to river (at a distance from river
<100 m)

The number of valid cases was 178, with 169 considered and
9 outliers. The percentage of variance explained increased to
64.3% (Pearson=0.80).

The variables selected were:

1. Minimum distance from active fault (Ln), negative sign.

2. Maximum slopes (Lnˆ2), positive sign.

3. Distance from trails, negative sign.

The level of significance is very high (all p-level much
smaller than 0.05), no auto-correlation suspected (see Ta-
ble 5). First contributor is slope (42.0%), followed by dis-
tance from active fault (36.8%) and then distance from trail
(21.2%).

The parameters distance from trail is selected and this time
with a negative sign, thus according to what was expected).
NDVI is no longer considered by the model.

4.2.3 Landslides touching river

For this category of landslides (touching river), only the slope
(52.3% of contribution) and the distance from active fault

Table 5. Results from multiple regression analysis for landslides
close (but not touching rivers).

Variables Beta Coefficient p-level Contribution

Intercept 9.343 0.000000
D trail avLn −0.249 −0.172 0.000003 21.2%
D fault minLn −0.433 −0.230 0.000000 36.8%
SlopemaxLn2 0.493 0.245 0.000000 42.0%

R=0.802R2=0.643, Adj.R2=0.636,N=169, outliers = 9
Where:
Dist trail av Ln: Logarithm natural of minimum distance between landslides and trail
Dist fault min Ln: Logarithm natural of minimum distance between landslides and ac-
tive fault
Slopemax Ln2: Square of logarithm natural of maximum slope as recorded by
ASTER

Table 6. Results from multiple regression analysis for landslides
touching rivers.

Variables Beta Coefficient p-level Contribution

Intercept 8.630 0.000000
D fault minLn −0.490 −0.211 0.000000 47.7%
SlopemaxLn2 0.537 0.200 0.000000 52.3%

r=0.730,R2=0.532, Adj.R2=0.520,N=82, outliers = 5

(47.7%) is relevant according to the statistical model. The
explanation value is 53% (Pearson=0.73). The level of sig-
nificance is very high (all p-level much smaller than 0.05), no
auto-correlation suspected (see Table 6). The distance from
trails/roads and NDVI is no longer considered.

5 Cartographical results

Spatial model

The model was improved by looking at different distance
from rivers, although following the theory, three sets of equa-
tion should be collected (touching rivers,<100 m from rivers
and away from them), given that at such resolution only three
pixels account for a distance of 90 m, a simplified model
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Fig. 7. Map of landslides susceptibility as modelled.

based on results provided in Table 4 (away from rivers) and
Table 6 (touching rivers) provides the following equations:
If Distance river>100, then

Ls areaLn= −0.219·D fault Ln−1.54·NDVIt avLn

+0.373·Slope2Ln+7.029 (4)

Else

Ls areaLn=−0.211·D fault Ln+0.2·SlopeLn2
+8.63 (5)

Buffers of 100 m were generated on both sides of rivers for
discriminating between first and the second case. For each
pixel (of 30 m×30 m) the distance from active fault, the slope
and the NDVI were computed (with the relevant transforma-
tions and corresponding weights and exponents). This allows
the creation of a susceptibility map as shown in Fig. 7.

6 Discussion

The five factors identified as having an influence on landslide
area fell in three categories, namely: slope, distance from lin-
ear features (active fault; trails or river) and vegetation cover
density.

6.1 Slopes

Not surprisingly, the main parameter for landslides occur-
rence is slope. The positive sign associated to the parameters
is indicating that the steeper the slope, the higher the land-
slide susceptibility, which is perfectly logical. Tests were
made using the SRTM DEM (at 90 m resolution), however

the variance explained dropped significantly, hence extrapo-
lation to larger areas was abandoned. The role of slopes be-
ing so predominant, a higher resolution is needed. Higher
resolution DEM might improve the model. It may allow
computation of concave and convex slopes as this was proven
to be an improved explanatory factor in other study (Sato et
al., 2007).

6.2 Distance from features

The negative sign before the coefficient means that the closer
from the active fault, river or trail/road, the larger the value
of landslide area. This is consistent with the theory, the max-
imum energy being closer to the epicentres. Similar links
with negative coefficients were found for rivers and trails, al-
though the influences of these features are much more local
and the range of influence on instability is not known. Trails
could be replaced by roads (although there are fewer of them
and thus the variance explained was slightly lower). If dis-
tances from trails and roads were highlighted in the general
model, it was only selected for landslides near but not touch-
ing rivers. Indeed, most of the roads are along main rivers, so
while selecting areas touching rivers, it spatially already in-
cludes these roads, hence the selection wasn’t pertinent any-
more. However, their selection in the general model is an
indicator that these human infrastructures should be studied
with attention.
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Fig. 8. Scatterplot of vegetation density (NDVI t) versus slope
(slope pc).

6.3 Vegetation density (NDVI)

The use of NDVI proxy appears to be efficient in linking con-
textual vegetation density with susceptibility of landslides.
Although the part of variance explained was not really high,
the confidence in the selection (low p-level) clearly indicates
that the presence of denser vegetation has a mitigation ef-
fect on landslide susceptibility. The close up using the ver-
ification model provides some striking examples for the en-
tire map. When displayed to local decision makers, it had a
large impact and will hopefully lead to improve environment
management. Socio-economical studies on why forests have
been cleared should now be conducted in order to see what
solutions could be envisaged to reverse the trend. By running
the model without the NDVI mitigation effect, the total sus-
ceptibility in the study rose by 15.13%. This delineates that
vegetation cover is a significant component of risk reduction.

6.4 Verification of causality

Correlations between set of parameters do not necessarily
imply causality. Providing this link is the usual weakness
of statistical regression analysis.

One might argue that because areas on steep slope might
be less covered by vegetation. Thus observing less dense
vegetation might be an indirect way of looking at slope. To
test if slopes and vegetation are correlated, a simple scatter-
plot of the two susceptibility factors can be computed us-
ing the function “scattergram” in the module GRID from
ArcINFO workstation (see Fig. 8). This scatterplot shows
no correlation between the two variables. Hence, there is no
indication that vegetation density is function of slope.

Another test can be run by looking for similar areas, where
only one parameter is changing. For example, to test whether
vegetation density has mitigation effect on landslide suscep-
tibility, a model can be run without the NDVI component,
thus normalising all the features but the vegetation. By plot-
ting forest cover (pre-landslide) and landslides as recorded,
landslides should be more frequently observed in areas with
similar landslide susceptibility in areas with lower vegetation
density as compared with areas covered with dense vegeta-
tion.

The Fig. 9 shows three different models, clearly looking
at slopes and distance from active fault does not explain for
all the landslides on river shores. Thus model “b” is already
adding valuable information on susceptibility by adding dis-
tance from rivers; however, model “a” and “b” are presenting
an area of landslide susceptibility that is much larger than
observed impacts. Adding vegetation cover as parameters
(model “c”), drastically reduces the area at risk and provides
a much better match between observed landslides and the
model.

In Fig. 10, the upper panel close up shows a model with-
out a vegetation density component. In a way it shows a
theoretical situation if all vegetation were removed. The sus-
ceptibility seems to be spread in most of the area, whereas
observed landslides areas are featured in bold black. On the
right-hand close up, the model includes the vegetation mit-
igation effect. The areas susceptible to landslides are much
more concentrated and fit better with the observed impacts.

These results are encouraging. Although global datasets
cannot (and should not) be used for local landuse planning,
this method has some great potential as an advocacy tool or
to determine where more detailed data should be acquired,
allowing saving on – usually – high input costs.

7 Conclusion

The study confirmed the hypothesis that landslide occurrence
is higher on steep slopes, close to rivers, trails, active fault
and that vegetation cover seems to act as stabiliser in this
region. The results from this research show that adding the
mitigation effect of vegetation cover in the model drastically
improves the model as compared with the observed landslide
areas. This seems to indicate that, in this region, vegetation
seems to play a significant role in decreasing landslide sus-
ceptibility. It shows that global available datasets can be used
to select layers of information to be gathered and narrow the
areas where deeper analysis should be conducted.

Given that this study uses of low costs data and free avail-
able data, the resolution of such data (at best 30 m) is not ap-
propriate for local land planning. But given the price of high
resolution DEM and satellite sensors (e.g. IKONOS, Quick-
bird, GeoEye and alike), such study is very useful to identify
areas where detailed data should be collected.
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Fig. 9. Different models of landslides susceptibility (a including slope and active faults,b adding distance from rivers,c adding presence of
vegetation).

Fig. 10. Close up without vegetation mitigation effect (model “b”),
left and with vegetation mitigation effect (model “C”), right.

The applied method proved to be successful in provid-
ing statistical links between contextual parameters, vegeta-
tion density and size of landslides. The extrapolation of the
model to the area provides a general quick look of the areas
of potential high risk of landslide occurrence. The spatial
precision of the DEM was the main reason for the success
of this analysis; hence the extrapolation using lower spatial
distribution (such as SRTM) was not possible without signif-
icant decrease in accuracy. New studies from University of
Lausanne are now been implemented with very high resolu-
tion satellite data (Quickbird, 0.6 m resolution) to zoom in
the Neelum Valley and bring more in depth analysis.

The role of small tracks in inducing risk of soil instabil-
ity was highlighted. This parameter (along with vegetation
cover, slope, distance from rivers and proximity from active
fault) should be considered for landuse planning. Whereas
for timber exploitation, pasture or access, such high risk
areas cannot be managed without improved information in
landslide occurrence. The larger gap to be bridged is the lack

of data on soil types, which would most probably, increase
the level of accuracy. It would, however, introduce a diffi-
culty, as type of soil is not a continuous variable. It would
request either to run several models (one for each type of
soil), or to use expert judgment on the susceptibility of each
soil type.

The methodology is quite simple, based on global datasets
and/or easily accessible data. This was applied in the case of
landslides triggered by earthquakes, but should now be tested
on other areas with landslides triggered by heavy precipita-
tion in deforested areas. It can be adapted to allow gathering
evidence in different areas of the planet where heavy defor-
estation has been recorded, thus hopefully address the mes-
sage that healthy ecosystems can help reduce disaster risk.

This model was presented to local authorities. The sim-
ple message it carries was well-received. It should be em-
phasized that reforestation cannot suppress all the suscepti-
bility factors (such as slope, rivers and distance from active
fault). Landuse planning in areas where such magnitude of
earthquakes can take place is not an easy task. Planting trees
and increasing vegetation density cannot be the only solution
and should not be done blindly. Methodologies for reforest-
ing using local useful species is one of the recommendations,
however, some cities in the region are located straight on the
active fault (or potentially active fault), on Quaternary rocks,
where recorded vertical deformation of land (uplift) was be-
tween 1 and 6 m. Clearly in these locations, forest cover will
not be of sufficient protection. If delocalisation of population
is to be carried out, it is hoped that the new settlements will
be chosen with care not to recreate risk and that it will be
done with more consideration for environmental features.
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Table A1. Raw data sources.

Features Raw data providers URL link (if relevant)

Post event landslides Service Régional de traitement d’image et de
téléd́etection (SERTIT)

http://sertit.u-strasbg.fr/documents/asie/asiaen.html

Post event landslides National Engineering Services of Pakistan (NES-
PAK), both obtained through the Humanitarian In-
formation Centre For Pakistan (HIC)

active fault Manually digitalised from a map published by
Nakata et al. (1991)

Roads/trails United Nations Joint Logistics Centre (UNJLC)

Rivers Data Repository of the Geographic Information
Support Team (GIST)

https://gist.itos.uga.edu/index.asp?body=repository

Epicentres Advanced National Seismic System (ANSS) http://quake.geo.berkeley.edu/anss/

Vector country borders NIMA Vmap level 0, UN Cartographic Section www.mapability.com/info/vmap0intro.html

Digital Elevation Model
(DEM), 90 m

Consortium for Spatial Information (CGIAR-CSI)
SRTM version 3.

http://srtm.csi.cgiar.org

DEM, 30 m From ASTER data purchased at USGS http://lpdaac.usgs.gov/aster/ast14dem.asp

Satellite imagery Landsat 7 ETM+, path/row: 150/36, 7 Oct
2001, original data sources: Landsat ETM from
7 Oct 2001, path/row 150/36 obtained through
the Global Observatory for Ecosystem Services,
Michigan State University

http://landsat.org

Table B1. Set of independent variables extracted.

ID Variable name Description

V1 Geol class Classified lithology
V2 TYPES Landslides shape (horizontal, vertical

and large)
V3 EPI55Ln Log Natural (Ln) of Distance

Epicentre>5.5 and centre of land-
slides

V4 EPI7 Ln Ln of Distance Epicentre>7 and centre
of landslides

V5 EPI8 Ln Ln of distance between epicentre = 7.6
and centre of landslides

V6 DFPC2001 Dense forests % in 2001 (transformed
and Ln)

V7 AFPC2001 All forest % in 2001 (transformed and
Ln)

V8 DFPC1992 Dense forests % in 1992 (transformed
and Ln)

V9 AFPC1992 All forest % in 1992 (transformed and
Ln)

V10 DFPC1979 Dense forests % in 1979 (transformed
and Ln)

V11 AFPC1979 All forest % in 1979 (transformed and
Ln)

V12 D AF N Deforestation 2001-1979 all forest,
normalised et Ln

V13 D DF N Deforestation 2001-1979 dense forest,
normalised and Ln

V14 DEM D Ln Difference in elevation en Ln

Table B1. Continued.

ID Variable name Description

V15 SL MAXPC Slope max in %
V16 SLMEANPC Slope min in %
V17 SLOPESTD Slope standard dev.
V18 SL MEDPC Slope median %
V19 FAU E Ln Ln distance fault (edge)
V20 FAU C Ln Ln distance faille (centre)
V21 RIV E Ln Ln distance to river (edge)
V22 RIV C Ln Ln distance to river (centre)
V23 ROAD ELn Ln distance route (edge)
V24 ROAD CLn Ln distance route (centre)
V25 TRAILELn Ln distance trail (edge)
V26 TRAILCLn Ln distance trail (centre)
V27 LN AS D Ln DEM Aster Difference DEM
V28 AS SLMAX Maximum slope max from ASTER

DEM
V29 AS SLAV Slope average from ASTER DEM
V30 AS STD Slope standard deviation from ASTER

DEM
V31 minR Tc Distance minimum between road and

trail (centre)
V32 minR Te Distance minimum between road and

trail (edge)
V33 MinNDVIt Ln Minimum NDVI transformed and Ln
V34 MaxNDVIt Ln Maximum NDVI transformed and Ln
V35 AVNDVIt Ln Average NDVI transformed and Ln
V36 Slopemax2 Ln Ln of the square of the maximum slope
V37 SlopemaxLn2 Square of the Ln of maximum slope
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Table C1. Example of a selection of non-correlated features using correlation matrix.

Variables V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V1 –
V2 −0.611 –
V3 0.030 0.064 –
V3 0.151 −0.021 0.681 –
V5 −0.157 0.150 0.511 0.408 –
V6 −0.306 0.263 0.397 0.291 0.661 –
V7 −0.190 0.160 −0.054 0.010 0.557 0.379 –
V8 −0.574 0.509 −0.018 −0.059 0.132 0.194 0.127 –
V9 −0.027 −0.047 0.073 0.026 0.086 0.137 0.039−0.110 –
V10 0.246 −0.180 0.164 0.240 0.115 −0.034 −0.002 −0.191 0.006 –
V11 −0.084 0.070 0.013 0.000 0.069 0.244 0.064 0.038−0.030 −0.035 –
V12 0.322 −0.329 0.023 0.069 −0.111 0.004 −0.078 −0.358 −0.218 0.085 0.546

In bold the variables that cannot be placed in the same group of analysis.

Table D1. Descriptions of acronyms used in this paper.

Acronyms Description

ANSS Advanced National Seismic System
ASTER Advanced Spaceborne Thermal Emission

and Reflection Radiometer
CGIAR-CSI Consortium for Spatial Information
CNSS Northern California Earthquake Data Center
CRED Centre for Research on Epidemiology of

Disasters
DEM Digital Elevation Model
GIS Geographical Information System
GIST Geographic Information Support Team
HFA Hyogo Framework for Action
HIC Humanitarian Information Centre For Pak-

istan
IFRC International Federation of Red Cross and

Red Croissant Societies
ISDR International Strategy for Disaster Reduc-

tion
IUCN International Union for Conservation of Na-

ture
IUED Institut Universitaire d’Etude du

Développement
NDVI Normalised Difference Vegetation Index
NESPAK National Engineering Services of Pakistan
NIR Near Infra-Red
SAR Synthetic Aperture Radar
SERTIT Service Ŕegional de traitement d’image et

de t́eléd́etection
SRTM Shuttle Radar Topography Mission
UNEP United Nations Environment Programme
UNEP/GRID United Nation Environment Programme,

Global Resource Information Database
UNJLC United Nations Joint Logistics Centre
UTM Universal Transverse Mercator

Table E1. List of software used for the analysis.

Tasks Software

GIS ArcGIS 9.2; ArcINFO workstation 9.2
Remote sensing ERDAS IMAGINE 8.4
Statistics Statistica 8, Minitab 15.1.30.0.
Cartography, graphs Adobe Illustrators CS3, Photoshop CS3

Appendix F

Statistical concepts

For readers who are not familiar with some of the sta-
tistical concepts used in this paper, here is a small sum-
mary. This section is adapted from the on-line help of
StatSoft Electronic Statistics Textbooks (http://www.statsoft.
com/textbook/statistics-glossary/).

F1 Multiple regression analysis

When addressing the potential link between one variable
(e.g. slope) and a dependant variable (e.g. landslide areas)
simple scatter plots provide useful information (see Fig. F1).

Some variables can directly be linked with landslide areas
(e.g. slope), however, one variable is usually not enough to
model the behaviour of a dependent variable. Variables can
have a multiplicative effect when associated one to another.

To understand what the best combinations of susceptibility
factors are and how they contribute to landslide area, amulti-
ple regression analysiscan be made. Such statistical process
aims to highlight the relationship between a dependent vari-
able (e.g. landslide area) and several independent variables
(potential susceptibility factors, e.g. slopes, distance from ac-
tive fault, presence of vegetation,...).
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Fig. F1. Mattrix plots of correlations.

Fig. F2. Normality.

The aim is to obtain an equation such as:

LA = αX1+β ·X2+ ...+θ ·Xn +I

Where LA = Landslide area;X1 = first susceptibility factor
(e.g. slope);X2 = second suscpeptibility factor (e.g. distance
from active fault);Xn = last susceptibility factors (e.g. veg-
etation density);α, β andθ = weights which multiplies the
factors.
The purpose is double, first it allows a better understanding
of the underlying processes leading to landslides, secondly, it
provides the weights associated with each susceptibility fac-
tors, allowing creating maps of landslides susceptibility. The
main limitation being that although it shows potential link, it
cannot ensure causality (see causality below).

F2 Pearson coefficient,r

The independent variables in the model should not have in-
fluence between them. To produce group of independent
variables a correlation matrix is computed and variables that
are too correlated should not be tested in the same hypothe-
sis. Thus group of uncorrelated variables should be created
(see Table C1). Ther is the pearson coefficient, it is com-
puted as follows:

r =

∑
(x −x) ·

∑
(y −y)√∑

(x −x)2 ·
∑

(y −y)2

wherex is the average for a observed dependant variable;y

is the average for the modelled variable.
In this study, two independent variables could be placed in

the same group if|r| < 0.5.

F3 R2 and adjustedR2

R2 is the square ofr, it provides an indication of the percent-
age of variance explained.

AdjustedR2 is a modification ofR2 that adjusts for the
number of explanatory terms in a model. Meaning that by
adding more explanatory variables you might increase the
R2, but it could also be by chance (over fitting models). The
AdjustedR2 is particularly useful in the selection of poten-
tial susceptibility factors as it takes into account the number
of explanatory variables and only increase if the added ex-
planatory variable explains more than as a result of a coinci-
dence.

adj.R2
= 1−(1−R2) ·

n−1

n−p−1

Wheren is the sample size,p is the number of independent
variables in the model.

In general terms, the more explanatory variables you have
the less theR2, because by introducing more independent
variables, you increase the risk that the results is obtained by
random. This is often called “overfitting”.
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Fig. F3. Simplified version of the statistical process used in this study.

F4 Normal distribution

The variables should follow a normal distribution. This can
be done by looking at histograms and by applying some
statistical normality tests (e.g. Normal expected frequen-
cies, Kolmogorov-Smirnov & Lilliefors test for normality,
Shapiro-Wilk’s W test.). If a variable do not follow a normal
distribution, it needs to be transformed so that it does (e.g.
computing the Ln, or using transformation formula). The fig-

ure below shows the distribution of landslide areas. Taking
the Ln greatly improve the normality.

Other functions can be used as specified in the article.

F5 Outliers

Outliers are cases that do not follow the general assumption.
In the real environment, it is difficult to take all the parame-
ters reflecting the complexity of the situations. Some isolated
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cases, might have specific settings, and they don’t follow the
general trends. These outliers are easy to identify as they
are distant to the rest of the data. They should be identified
and removed so that the general rule can be better identified.
However, an analysis of these outliers should be performed
to ensure that they don’t follow another rule. If this is the
case, then the dataset might need to be split so that two (or
more) models can be generated. For example, we differenti-
ated landslides close to rivers and landslides away from rivers
as it seems that these two groups follow different rules.

F6 Causality

Correlation between two variables (e.g.A & B) do not imply
that variation of A is the origin of the variation ofB.

If multiple regression can shows potential link, it cannot
ensure causality.

What we aim to do is to say that factorA (e.g. vegetation
density) influenceB (landslide area). Now having a correla-
tion between factorsA & B can have several origins:

A is indeed having an influence onB or
B is influencingA or
C is influencingA & B.

The p-level provide good insight on the probability that the
link is due to a coincidence. However, addressing causality is
always the main challenge (see discussion under “verification
of causality”).

In the final table (in blue) provided, the coefficient “Beta”
provides information on the relative contribution of each sus-
ceptibility factor to landslides area. Slopes is the main one
(0.54) and has a positive sign, hence the steeper the slope
the bigger the landslide area; distance from active fault is the
second contributor (−0.51) and has a negative sign, hence the
further away from active fault line, the smaller the landslide
areas and finally NDVI has a negative sign, hence denser veg-
etation (high NDVI) relates to smaller landslide areas.

One can even compute the percentage of contribution from
each factor. For this we need to sum the absolute value of
the Beta coefficient (0.51+0.26+0.54=1.31), then the ratio of
each absolute value of the Beta coefficient provides the per-
centage of contribution for each variable: slope contributes
for 41.22% (0.54/1.31), distance from active fault for 38.93%
and NDVI for 19.85%. These percentage are provided in the
last column (contribution).

The coefficientB (third column) provide the weights
which can be used to model the landslide area (see equation
of the model below the table).

The p-level indicates the probability that the variable was
selected by coincidence. For example a p-level of 0.05 indi-
cates that there is 5% of chance that the selected variable is
a “fluke”. This level is customarily treated as a “border-line
acceptable” error level. So the lowest the p-level the highest
the confidence in the selection. In this study the highest p-
level was 0.0018, meaning the all the selected variables have
less than 0.18% chance of being selected by coincidence.
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