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Abstract. A comprehensive methodology to assess forest
fire susceptibility, that uses variables of strong spatial corre-
lation, is presented and applied for the Portuguese mainland.
Our study is based on a thirty-year chronological series of
burnt areas. The first twenty years (1975–1994) are used for
statistical modelling, and the last ten (1995–2004) are used
for the independent validation of results. The wildfire af-
fected areas are crossed with a set of independent layers that
are assumed to be relevant wildfire conditioning factors: ele-
vation, slope, land cover, rainfall and temperature. Moreover,
the wildfire recurring pattern is also considered, as a proxy
variable expressing the influence of human action in wildfire
occurrence. A sensitivity analysis is performed to evaluate
the weight of each individual theme within the susceptibil-
ity model. Validation of the wildfire susceptibility models
is made through the computation of success rate and predic-
tion rate curves. The results show that it is possible to have
a good compromise between the number of variables within
the model and the model predictive power. Additionally, it is
shown that integration of climatic variables does not produce
any relevant increase in the prediction capacity of wildfire
susceptibility models. Finally, the prediction rate curves pro-
duced by the independent cross validation are used to assess
the probabilistic wildfire hazard at a scenario basis, for the
complete mainland Portuguese territory.

1 Introduction

Wildfires have destroyed, in the past few years, thousands of
hectares in Portugal (e.g. over 425 thousand ha burnt in 2003
and over 300 thousand ha in 2005) stepping up as a major
environmental problem in the country. Numbers have been
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far more positive since 2006, but how they will evolve in the
future is highly uncertain (Fig. 1). Between 1980 and 2007,
wildfires have affected over 3 million ha in Portugal: that is
equivalent to almost all of Belgium, one and half of Israel
or twelve times the Luxembourg territory. Summed up, what
was burnt in those 28 years is almost equivalent to the present
day Portuguese forested areas.

Two thirds of Portugal is forested spaces, providing for pa-
per, cork, furniture and many more products accounting for
3.2% of the Gross National Product (GNP), and 15 thousand
jobs, in 2005. This data points to wildfires as a problem,
not even accounting other environmental issues. Further-
more, the Portuguese forest was last evaluated at around
7750 millionC. To sum it up, the problem is how to sustain
64%, roughly two thirds, of the Portuguese territory.

Wildfires are not a Portuguese exclusive and several au-
thors have dedicated their time investigating how to best
model and achieve cartographic tools for wildfire suscep-
tibility and hazard assessment, such as the work of Chu-
vieco and Congalton (1989), Viegas et al. (1999), Vasilakos
et al. (2007), and Verde (2008) among others. Some at-
tempts have been made to model susceptibility by means
of different methods, like nearest-neighbourhood. Such is
the case of Amatulli et al. (2007) who applied interpola-
tion techniques to map lightning/human-caused wildfires, or
Durão et al. (2010) whose work, dealing with the Canadian
FWI system, tried to assess the probability of fire in a given
region by running simulations. Apart from the somewhat
static approach of susceptibility assessments, other authors
have explored the correlations of wildfires and weather con-
ditions, such as in Pereira et al. (2005), Trigo et al. (2006)
and Le Page et al. (2008). Wildfire prevention is a vec-
tor for model development, driving efforts for a better pre-
diction of those conditions that favour fire spread, or to al-
low for a quicker wildfire detection. The United States Na-
tional Weather Service is running an experimental interface
which divulges fire weather warnings, outlooks and danger
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Fig. 1. Evolution of burnt area and number of wildfires in Portugal
from 1980 to 2007.

ratings (NOAA, 2010), and while that information is for
North America, a similar service, under the United Nations
International Strategy for Disaster Reduction (UN-ISDR),
provides a global early warning system for wildfires, whose
objective is to “(...) provide a scientifically supported, sys-
tematic procedure for assessing current and future fire dan-
ger that can be applied from local to global scales. (...)”
(GWFEWS, 2010). Other global modules have been devel-
oped under the UN-ISDR, such as the Lund-Potsdam-Jena
Dynamic Global vegetation model, looking for interactions
between vegetation and fire (GFMC, 2010). All these stud-
ies and approaches share a common goal, explicit or implicit:
through a better knowledge of wildfire susceptibility, on land
or atmospheric conditioning factors, reducing exposure and
minimizing losses. The aforementioned studies have varying
degrees of complexity, and many more authors have studied
this subject, making it very difficult to refer them all. This
paper focuses more on susceptibility as a property of the ter-
ritory and less on wildfire dynamic patterns due to weather
conditions, although correlations with rainfall and tempera-
ture are explored, to investigate model behaviour with similar
variables as those used by other authors.

2 The conceptual framework

In Sect. 1, we have shown that the problem is how to sustain
a large portion of the Portuguese territory. To do so, con-
cepts must be clearly defined and understood, because ac-
tions might be taken to deal with the problem on the hazard
level – through hazard reduction – or by risk mitigation on a
broader sense.

A consensus regarding the concept of wildfire risk does
not exist. Bachmann and Allgöwer (1999) have already ad-
dressed that issue, pointing out that “the somewhat inconsid-
erate use of the various terms “danger”, “hazard”, and “risk”
may result in misunderstandings that can have fatal conse-
quences” (op.cit., p. 1). Indeed, if a common understand-
ing of what is hazard and what is risk does not exist, we
might end up using products in an erroneous way: wildfire
risk maps, containing financial data, cannot be read as direct

ConsequencesHazard

Risk =   Susceptibility x Probability x Vulnerability x Economic Value

Fig. 2. Conceptual framework, based on Varnes (1984) and Bach-
mann and Allg̈ower (1999).

indications of where a wildfire can grow faster and harder
to extinguish due to increased susceptibility or recurrence
patterns. If such a mistake happens at an operational level,
where decisions must be made fast and accurately, conse-
quences may be dire.

As the aforementioned authors pointed out, “the phe-
nomenon fire has so many aspects as do people who are
dealing with it (...) based on their primary interests, each of
these “communities” has different notions of the term “wild-
fire risk” (Bachmann and Allg̈ower, 1999, p. 1). The con-
ceptual framework we adopt in this paper is the same frame-
work widely applied to study other hazardous phenomena,
like mass movements, floods or earthquakes, following the
UNDRO (1979) and Varnes (1984) proposal and the risk def-
inition given by Bachmann and Allg̈ower (1999, p. 5): “the
probability of a wildfire occuring at a specified location and
under given circumstances and its expected outcome as de-
fined by the impacts on the affected objects”. We consider
wildfire susceptibility the terrain propensity to suffer a wild-
fire or to support its spreading, given by the terrain’s intrinsic
characteristics (e.g., elevation, slope, vegetation cover). In
addition, we consider wildfire hazard as the probability of a
wildfire occurance associated with terrain susceptibility.

In this paper, we do not get into risk. Our study stops at
hazard assessment. Figure 2 shows the adopted conceptual
framework.

3 Susceptibility assessment

For susceptibility assessment, our model integrates some
widely used variables in wildfire hazard modelling. The
following variables were considered: elevation, slope, land
cover, average annual rainfall, average number of days with
minimum temperature≥20◦C, and past burn scar mapping
(which we transformed into simple probability). We have
chosen to include those variables that relate to the fire tri-
angle, air, heat and fuel, but also to the most prominent fire
agent in Portugal: man. We did not consider variables that
could be best used in dynamic mapping (e.g., wind speed
and direction), mostly when fire is already progressing, as
our purpose was to map susceptibility in the long term, as
a property of the territory, as mentioned in Sect. 1. A sen-
sitivity analysis was performed in order to assess the vari-
able combination with the best prediction capacity. Figure 3
summarizes the adopted methodology from data capture to
wildfire susceptibility and hazard evaluation.
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Fig. 3. General methodology from data sources and data integration, to susceptibility and hazard mapping.

3.1 Data capture

Elevation is one of the wildfire conditioning factors. Ele-
vation “controls temperature and rainfall” (Ventura and Vas-
concelos, 2006, p. 101–102), which will, in turn, influence
the type and availability of fuel, as well as its humidity. El-
evation is not homogeneous in Portugal, and the higher val-
ues are found in the central and northern part of the country
(Fig. 4).

Influence of slope on fire progression is well known. The
higher the slope, the faster fire progresses by heating of fuels
uphill. Slope is also a factor that controls the wind speed
(Macedo and Sardinha, 1993; Ferreira de Castro et al., 2003;
Viegas, 2006). The spatial pattern of slope distribution in
Portugal is similar to that of elevation (Fig. 5). The slope
gradient is usually higher in the north and central part of the
country.

The existence of wildfire susceptibility depends on sus-
ceptible territories, and it does not make any sense to assess
wildfire susceptibility where wildfires cannot occur. There-
fore, we have excluded from the land cover thematic layer
(CORINE Land Cover 2000), all artificial areas, inland water
bodies and ocean, corresponding to levels 1, 4 and 5 (Fig. 6).

The selection of the appropriate meteorological parame-
ters to integrate wildfire susceptibility models is a significant
issue. In Portugal, according to Pereira et al. (2006), “rainfall
between January and April shows a slight positive correla-
tion with burnt areas, possibly because it favours the growth
of fine fuels (...) to burn during the summer”. On the other
hand, “there is a negative correlation (...) between the burnt
area and rainfall during the month of May” (op.cit, p. 149)
which results in higher humidity levels on those fine fuels,
that become less available for ignition. In our work, rain-
fall influence is integrated into the model by using the mean
annual precipitation from the period 1931–1960 (Fig. 7).

www.nat-hazards-earth-syst-sci.net/10/485/2010/ Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010
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Fig. 4. Elevation map. Legend: class Id (see Table 1).

The rainfall annual average does not allow for a total assess-
ment of the above-mentioned rationale, however, knowing
how rainfall is distributed in Portugal, one can assume the
spatial coincidence between the higher annual rainfall and
the winter rainfall maxima, hence, confirming what Pereira
et al. (2006) have pointed out.

In previous studies (Pereira and Santos, 2003), air tem-
perature has been used as a variable for wildfire susceptibil-
ity assessment, assuming that regions with higher air tem-
peratures are those of higher wildfire susceptibility. Ven-
tura and Vasconcelos (2006) state that high temperatures
and low humidity levels favour the drying of fuels. Having
this assumption in mind, we chose to integrate air temper-
ature in a different way. Whereas in previous studies, like
Pereira and Santos (2003), it was integrated as the num-
ber of days with temperatures equal or above 25◦C, be-
tween May and September, we used the average number
of days with minimum temperatures equal to, or above,
20◦C (Fig. 8), for the period 1990–2007. Considering that
it is during night time that wildfire suppression efforts are
more likely to succeed, taking advantage of lower tempera-
tures and higher air humidity, we assume that where there are

Fig. 5. Slope map. Legend: class Id (see Table 1).

more nights with temperatures equal or above 20◦C, wildfire
susceptibility should be higher.

Past history of burnt areas enters into the model as a sim-
ple probability (Fig. 9), that allows us to read “every year,
what is the probability of each ground unit to be affected
by combustion?”. This approach allows for discriminating,
where fire is a recurring phenomenon rather than an unusual
event. These wildfire records are also used to determine wild-
fire favourability for all other variables, as the past – from a
mapped history of more than 30 years of wildfires – shows
us how different classes of those variables behave under fire.
Historical data is also a proxy for a factor that would, other-
wise, be extremely difficult to integrate in the model: human
behaviour. In fact, this factor is extremely important to un-
derstand wildfires in Portugal, because over 97% of wildfires
are linked with human causality (Beighley, 2009). In Ta-
ble 1, we present the legend and favourability scores for all
variables, except for probability, for which no favourability
score was computed. It should be noted that not all thematic
layers have the same total number of pixels as a consequence
of different criteria for definition of coastlines and inland wa-
ter bodies. In the case of land cover, not considering levels 1,

Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010 www.nat-hazards-earth-syst-sci.net/10/485/2010/
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Fig. 6. Landcover map. Legend: class Id (see Table 1).

4 and 5 as previously stated, adds to this difference. We have
chosen not to force all thematic layers to the same extent
because the difference was small and in doing so we could
bring erroneous data into the model. In all models, we used
a subset of 20 years of burnt scars (1975–1994) to compute
favourability scores, and the remaining set of 10 years (1995–
2004) for the independent validation of susceptibility results
(Fig. 10). It becomes clear that these thematic layers do not
entirely share the same timeframe and this may be consid-
ered a drawback of our model. However, in a previous work,
Verde (2008) had shown that the effectiveness of the model
was not affected by combining land cover of the year 2000
with burnt scars of the period 1975–1994. In fact, that au-
thor has shown that, using land cover of the year 2000, the
model has an overall better behaviour with older burnt scars
(e.g. 1975–1984) than with a block comprising the year the
land cover was created (1995–2004). In addition, climato-
logic data is assumed stable regarding their spatial distribu-
tion, and we expect annual rainfall and temperature patterns
to remain reasonably unchanged in the medium-long term,
taking into account the Portuguese climate, where the most
annual rainfall occurs during winter time and the higher tem-
peratures during the summer.

Fig. 7. Annual Rainfall map (based on Daveau et al., 1977). Leg-
end: class Id (see Table 1).

3.2 Integrating the variables

We perform the wildfire susceptibility assessment based on
the following assumptions: 1) the probability of occurrence
of burnt areas can be quantitatively assessed by statistical re-
lationships between past burnt areas and a spatial dataset; and
2) wildfires, assessed by their respective burnt areas, occur
under conditions that can be characterised by the layers in
the aforementioned spatial dataset, thus, considered as con-
ditioning (or predisposal) variables, to be integrated in the
prediction model.

Our work has been done in a GIS, with raster process-
ing, after preparing and transforming vector data we had
available. We used a 80-m pixel size digital elevation
model (source: http://www.fc.up.pt/pessoas/jagoncal/srtm/
srtm.htm) from which we derived the elevation and slope
themes.

The rationale behind the use of the method used to weigh
variable cases is beyond the scope of this paper, but it fol-
lows the work of Chung and Fabbri (1993) and Fabbri et
al. (2002) regarding favourability scores. The basic equation

www.nat-hazards-earth-syst-sci.net/10/485/2010/ Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010
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Fig. 8. Temperature map. Legend: class Id (see Table 1).

for favourability score calculation, for all variables, except
probability, is:

Sfx=
umAx

�x
·100 (1)

Where Sfx is the favourability score for classx, umAx is the
total number of burnt units (or pixels) in classx, and�x is
the total number of units of classx.

In addition, the transformation of historical data into a
simple probability was made using Eq. (2):

pa=
f

N
·100 (2)

Where pa is the probability (simple, not conditioned),f is
the number of times the pixel has been burnt, andN the
number of years. Due to the nature of our dataset, it is not
possible for any pixel to havef higher than 1, therefore, pa
can never exceed 1 (or, as per Eq. 2, 100). After all favoura-
bility scores and probability values have been calculated, we
integrate the total set of variables using Eq. (3):

UC= pa∩Sf1∩Sf2∩ ...∩Sfn⇔

⇔ UCF= F(pa) ·F(Sf1) ·F(Sf2) ·F(...) ·F(Sfn)
(3)

Fig. 9. Annual Probability of wildfire occurrence.

Where UC is a unique condition, UCF is the unique condition
favourability value andF is the favourability value of each
class within each thematic layer.

The Unique Condition (UC) expresses all existing the-
matic layer combinations translated by the favourability
value of each class in each thematic layer (pa, Sf1, Sf2,...,
Sfn) as expressed in Eq. (3). The UC favourability value is
calculated for each pixel and is given by the multiplication
of the favourability score of each class variable present in the
pixel (Eq. 3). It should be noted that wherever a favourabil-
ity score computed zero, it was reclassified as the value one,
thus, becoming neutral in the multiplication.

To identify each model, resulting from the integration of
different variables, each layer is represented by a code, as
follows: A – Elevation, D – Slope, C – Land cover, R –
Rainfall, T – Temperature, P – Probability. Combining these
codes identifies which variables have been used, for example,
a model identified by “ACD” is a model whose calculation
took into account elevation, land cover and slope.

Unique condition favourabilities (UCF in Eq. 3) for each
model, when ordered in descending order and crossed with
burnt areas, allow computing two types of curve: success and

Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010 www.nat-hazards-earth-syst-sci.net/10/485/2010/
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Table 1. Thematic layers and favourability values of variables. The most significant results are highlighted in bold.

Thematic Class Number of pixels Number of burnt pixels Favourability Data
layer class ID in the class within the class value capture

Elevation (m)

0 1 114 515 240 0.0021
0–100 2 2 769 360 103 914 0.0375
100–200 3 3 102 003 216 481 0.0698
200–300 4 2 490 516 237 136 0.0952
300–400 5 1 384 088 217 162 0.1569
400–500 6 951 387 217 120 0.2282
500–600 7 774 191 223 624 0.2888
600–700 8 732 445 222 151 0.3033
700–800 9 702 783 214 079 0.3046
800–900 10 436 979 160 150 0.3665 Derived
900–1000 11 221 888 100 843 0.4545 from DEM
1000–1100 12 112 622 58 780 0.5219 (80-m pixel)
1100–1200 13 59 698 34 392 0.5761
1200–1300 14 31 791 19 637 0.6177
1300–1400 15 14 420 7160 0.4965
1400–1500 16 7932 2240 0.2824
1500–1600 17 4695 1110 0.2364
1600–1700 18 3961 547 0.1381
1700–1800 19 1744 258 0.1479
1800–1900 20 1574 28 0.0178
1900–2000 21 420 0 0.0000

Total 13 919 012 2 037 052

Slope angle

0–2◦ 1 3 769 671 270 168 0.0717
2–5◦ 2 4 620 398 647 943 0.1402 Derived
5–10◦ 3 3 113 286 856 590 0.2751 from DEM
10–15◦ 4 1 363 989 553 316 0.4057 (80-m pixel)
15–20◦ 5 659 408 315 286 0.4781
> 20◦ 6 392 260 196 724 0.5015

Total 13 919 012 2 840 027

Land cover (wildfire susceptible areas)

Non-irrigated arable land 211 1 708 124 82 209 0.0481
Permanently irrigated land 212 304 212 7269 0.0239
Rice fields 213 83 543 662 0.0079
Vineyards 221 363 891 8010 0.0220
Fruit trees and berry plantations 222 156 557 5298 0.0338
Olive groves 223 422 767 7772 0.0184
Pastures 231 58 999 2444 0.0414
Annual crops associated with
permanent crops 241 656 927 10 909 0.0166
Complex cultivation patterns 242 972 839 17 430 0.0179
Land principally occupied by
agriculture, with significant areas Corine Land
of natural vegetation 243 1 063 543 75 674 0.0712 Cover 2000
Agro-forestry areas 244 874 533 20 794 0.0238
Broad-leaved forest 311 1 908 393 212 452 0.1113
Coniferous forest 312 1 079 951 214 363 0.1985
Mixed forest 313 820 553 145 770 0.1776
Natural grasslands 321 289 554 157 757 0.5448
Moors and heathland 322 526 757 290 650 0.5518
Schlerophyllous vegetation 323 303 814 46 371 0.1526

www.nat-hazards-earth-syst-sci.net/10/485/2010/ Nat. Hazards Earth Syst. Sci., 10, 485–497, 2010



492 J. C. Verde and J. L. Zêzere: Assessment and validation of wildfire susceptibility and hazard

Table 1. Continued.

Thematic Class Number of pixels Number of burnt pixels Favourability Data
layer class ID in the class within the class value capture

Land cover (wildfire susceptible areas)

Transitional woodland-shrub 324 1 505 318 578 481 0.3843
Beaches, dunes, sands 331 18 868 456 0.0242
Bare rocks 332 69 070 32 018 0.4636
Sparsely vegetated areas 333 121 568 79 077 0.6505
Burnt areas 334 49 378 27 389 0.5547

Total 13 359 159 2 828 548

Yearly average rainfall (mm)

200–300 1 3353 1488 0.4438
300–400 2 37 445 16 903 0.4514
400–500 3 530 578 52 359 0.0987
500–600 4 2 274 773 123 320 0.0542
600–700 5 2 653 299 163 279 0.0615
700–800 6 1 893 065 146 436 0.0774
800–900 7 1 247 532 143 681 0.1152
900–1000 8 841 013 154 706 0.1840 From Daveau
1000–1200 9 1 329 184 258 192 0.1942 et al. (1977)
1200–1400 10 1 117 460 288 552 0.2582
1400–1600 11 790 464 267 946 0.3390
1600–1800 12 449 731 148 567 0.3303
1800–2000 13 301 067 100 095 0.3325
2000–2500 14 267 007 88 570 0.3317
2500–3000 15 145 103 53 847 0.3711
3000–3500 16 52 601 21 649 0.4116
3500–4000 17 9002 3918 0.4352

Total 13 942 677 2 033 508

Average number of days, per year, of minimum air temperature above 20◦C

0–3 d 1 2 517 498 395 707 0.1572
3–6 d 2 3 665 182 720 590 0.1966
6–9 d 3 2 561 075 466 648 0.1822 Meteorological
9–18 d 4 3 358 875 383 563 0.1142 Institute
18–36 d 5 1 816 251 70 544 0.0388

Total 13 918 881 2 037 052

prediction rate curves. The success rate curve results from
the cross tabulation between the model results and the burnt
areas used to build the model. Therefore, this curve is able
to evaluate the degree of model fit. The prediction rate curve
results from the cross tabulation between the model results
and an independent set of burnt areas that was not used in
the model, as referenced in Sect. 3.1. Hence, prediction rate
curve can be used to predict the future behaviour of wildfires.

3.3 Model results and validation

The first susceptibility model run was the CDP, assuming
wildfire susceptibility can be assessed through integration of
fuel (land cover), slope and the historical pattern (derived

from past burnt areas). This is a model of high success and
prediction rates (Fig. 11; Tables 2 and 3): the 30% most sus-
ceptible territory accounts for over 90% of burnt areas con-
tained in the model. As for the prediction, the same 30% of
the territory only predicts correctly 71% of those “new” burnt
areas, not considered in the model (1995–2004 sub-set).

On a second model run, another variable was added to the
model: elevation. The ACDP model maintains high rates
(Tables 2 and 3); however, keeping 30% of the most suscep-
tible territory as reference, the success rate is slightly lower,
but the prediction rate is somewhat better than before. In
Fig. 12, we plot those curves, keeping CDP curves for com-
parison.
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J. C. Verde and J. L. Ẑezere: Assessment and validation of wildfire susceptibility and hazard 493

Fig. 10. Modelling and Validation wildfire data subsets.
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Fig. 11.Success rate and Prediction rate curves for the CDP model.

Next, to evaluate the impact of rainfall on susceptibility
assessment, the rainfall layer was added to the model. The
five variable model, ACDPR, shows the worse behaviour
(Fig. 13). The prediction rate is similar to the previous model
(ACDP), but the success rate is worse.

To complete this series of model runs, temperature was
added to the model (Fig. 14). The six variable model, ACD-
PRT, has less satisfactory results, as both success and predic-
tion rates are worse than any other previous model, as can be
visually perceived in Fig. 14.

Although the general good quality of the wildfire suscepti-
bility assessment, we wanted to evaluate the models response
if burnt areas in the past (as mentioned earlier, transformed
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Fig. 12. Success rate and Prediction rate curves for the ACDP
model.
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Fig. 13. Success and prediction curves for the ACDPR model.
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Fig. 14. Success rate and prediction rate curves for the ACDPRT
model.
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Table 2. Success rates of susceptibility models. The most significant results are highlighted in bold.

Area 10% 20% 30% 40% 50% 60% 70% 80% 90%

CDP 64.12% 85.46% 90.87% 95.77% 97.83% 99.00% 99.97% 100% 100%
ACDP 59.47% 81.72% 90.42% 95.57% 97.42% 98.88% 99.73% 99.97% 99.99%
ACDPR 55.76% 79.66% 88.84% 94.06% 96.35% 98.26% 99.52% 99.82% 99.98%
ACDPRT 55.59% 79.12% 88.60% 93.55% 95.73% 97.44% 98.99% 99.77% 99.97%
CD 36.39% 60.07% 75.92% 84.83% 89.21% 92.62% 94.96% 97.84% 99.00%
ACD 37.51% 62.38% 76.24% 84.78% 89.59% 93.36% 95.77% 97.69% 99.27%
ACDR 36.90% 62.25% 77.50% 85.22% 90.00% 93.25% 95.50% 97.36% 99.00%
ACDRT 36.78% 62.47% 78.36% 85.75% 90.19% 93.25% 95.09% 97.01% 98.82%

Table 3. Prediction rates of susceptibility models. The most significant results are highlighted in bold.

Area 10% 20% 30% 40% 50% 60% 70% 80% 90%

CDP 34.52% 56.36% 71.31% 81.77% 87.87% 92.68% 95.02% 97.11% 99.79%
ACDP 33.91% 56.31% 71.65% 82.08% 88.41% 92.53% 95.40% 97.55% 99.23%
ACDPR 33.37% 55.65% 71.14% 80.63% 87.06% 92.21%95.42% 97.61% 99.32%
ACDPRT 33.08% 54.13% 69.11% 79.06% 85.55% 90.51% 94.22% 97.00% 99.06%
CD 30.48% 53.29% 70.12% 80.15% 87.04% 92.39% 94.74% 96.96% 98.81%
ACD 31.04% 53.99% 70.36% 81.01% 87.81% 92.25% 95.24% 97.50% 99.22%
ACDR 30.05% 53.10% 69.35% 79.53% 86.35% 92.02% 95.28% 97.57% 99.30%
ACDRT 29.25% 51.68% 67.61% 77.83% 84.56% 90.23% 94.02% 96.89% 99.02%
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Fig. 15. Success rate and prediction rate curves for the CD model.

into a simple probability) were to be removed. Therefore, a
second set of susceptibility models was performed without
the P layer.

The first model run, in this series, was the CD model
(Fig. 15). By comparison with the CDP model, when using
only land cover and slopes, both success and prediction rates
decrease in quality. Nevertheless, the similarity between the
prediction rate curves of both models, CD and CDP (differ-
ence around just 1%) is remarkable.

Figure 16 shows the differences between ACDP and ACD
models. As in the previous case, the success rate is worse,
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Fig. 16.Success rate and prediction rate curves for the ACD model.

but the prediction rate follows closely. In comparison to the
previous model (CD), adding elevation resulted in a subtle
gain, usually below 1%, on both success and prediction rates.

Adding rainfall to this series of models (ACDR) gener-
ates similar results (Fig. 17). The success rate does increase
slightly, but not always, and the prediction rate is below the
previous ACD model up until 70% of the territory.

Last is the ACDRT model (Fig. 18), which adds temper-
ature, allowing for a better success rate, but overall worse
prediction rate than any other variable combination.
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Table 4. Areas under the curve for success and prediction rates, for the total set of susceptibility models.

CDP ACDP ACDPR ACDPRT CD ACD ACDR ACDRT

Success 89.04% 87.87% 86.79% 86.47% 78.29% 79.08% 79.07% 79.15%
Prediction 76.87% 77.06% 76.60% 75.50% 75.61% 76.05% 75.57% 74.39%
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Fig. 17. Success rate and prediction rate curves for the ACDR
model.
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Fig. 18. Success rate and prediction rate curves for the ACDRT
model.

For a better perception of the susceptibility models be-
haviour, we computed the area under the curve (AUC) for
all models (Table 4). The CDP model is not the best one for
prediction at all area marks. However, it addresses more of
future burnt areas requiring less territory. Overall, the CDP
model has the best predictive behaviour. Also, the AUCs
clearly show that the CDP model has the best success rate.

As for prediction, CDP is only the second best suscep-
tibility model, but it uses less variables, has the best suc-
cess rate and, up to 20% of the territory (the highest sus-
ceptibility class), it predicts more burnt area than any other.
Therefore, the CDP model was chosen as our reference wild-
fire susceptibility model. Because the prediction curve is so

Fig. 19. Wildfire susceptibility in Portugal.

smooth, without any clear breaks that could guide classifica-
tion, a quintile classification was chosen, with each class hav-
ing around 20% of susceptible territory. Figure 19 illustrates
wildfire susceptibility in mainland Portugal. The prediction
capacity ascribed to each susceptibility class was taken di-
rectly from the prediction rate curve of the CDP model. The
meaning of the prediction values can be described as follows:
52% of the total area that will be burnt in the next future
will be located in the susceptibility class “very high”. On
the contrary, the susceptibility class “very low” will include
only 3% of the area to be affected by wildfires in the future.
We have not yet explored the specific reasons behind model
behaviour when adding or removing layers. It is possible
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Table 5. Hazard evaluation for wildfire susceptibility classes, for a
scenario of 500 000 ha burnt in a year.

Susceptibility Area Predictive Probability
class (nr. of pixels, value per

pixel=80 m) pixel

Very low 2 783 096 0.03 0.85%
Low 2 780 358 0.05 1.40%
Medium 2 758 308 0.12 3.38%
High 2 634 032 0.28 8.42%
Very high 2 401 267 0.52 16.81%

that, due mainly to the human nature of Portuguese wildfires,
variables not entirely related to the cause, but to the spread
of fire, when stacked in the model, add noise that reduces
its ability to accurately predict wildfire susceptibility. Many
of the Portuguese wildfires are related to fuel management
and landscape renewal or arsoning (AFN, 2009). Wildfires
start and/or spread mainly where people want them to. It is,
therefore, quite possible that the worst behaviour we get from
the model, when adding more variables, simply demonstrates
that their relevance, in this context, is not as high as it would
be should the fire mainly be of natural origin.

4 Hazard assessment

The hazard map has the same appearance as the susceptibility
map, but its classes are not subjective, they are probabilistic
values, given by an underlying scenario of future burnt area.

For hazard assessment of a single pixel within a wildfire
susceptibility class, we use the following equation (Zêzere et
al., 2004):

P = 1−

(
1−

aaf

atx
·vpredx

)
(4)

WhereP is the probability; aaf is the total area to be burnt
in the considered scenario; at is the total area within the sus-
ceptibility classx; vpred is the predictive value for the sus-
ceptibility classx. Table 5 shows an example of a hazard
calculation for each susceptibility class in a scenario of a to-
tal of 500 000 ha burnt in a single year. It should be noted
that the probabilities expressed in Table 5, are for each and
every pixel within a class, that is, every pixel on the highest
susceptibility class has a probability of ignition of 16.81%.

5 Conclusions

The existing large number of studies on the subject of wild-
fires is an indicator of how important wildfires are and how
they have motivated many investigators, due to the many as-
pects related to fire: social, economic, environmental and

cultural. This has led to the development of many meth-
ods for assessing wildfire susceptibility, not only under static
approaches, for medium- and long-term analysis, but also
for decision critical applications: when wildfires are already
spreading, taking into account current and local weather con-
ditions.

We have shown that wildfire susceptibility and hazard can
be assessed at a national scale using few variables, like past
wildfire history, slope and land use. The relationships be-
tween fire, land use and slope allow us to identify those areas
of higher susceptibility. Adding historical data provides a
better understanding of where wildfires have a pattern and
where recurrence places a problem. That is as relevant as
wildfires in Portugal are mostly of human origin.

Using only three variables makes the model quick to im-
plement and easy to process, while having a good compro-
mise between simplicity and predictive capacity. We have
demonstrated that adding more variables does not increase
the model prediction capacity substantially.

We have also demonstrated that meteorological variables
do not bring enough value to prediction rates, hence not of-
fering a good justification for including them in the wildfire
susceptibility model. Meteorological data is relevant on a
daily basis, for wildfire forecast mostly when wildfires are
already happening. However, it does not play a significant
role on long-term susceptibility assessment and mapping.

Finally, hazard evaluation is very useful in preparation for
worst case scenarios, and can be used as a method for de-
termining the number of hectares for fuel management using
techniques such as landscape mosaics and prescribed burn-
ing, determining optimal size for fuel management breaks,
optimal size for forest roads, the location and density of wa-
ter points for vehicles and airplanes, and for dimensioning
of fuel management around buildings on urban/forest inter-
faces.
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Centro de Estudos Geográficos, 3, 192 pp., 1977.
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