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Abstract. The Multimodel SuperEnsemble technique is
a powerful post-processing method for the estimation of
weather forecast parameters reducing direct model output er-
rors. It has been applied to real time NWP, TRMM-SSM/I
based multi-analysis, Seasonal Climate Forecasts and Hur-
ricane Forecasts. The novelty of this approach lies in the
methodology, which differs from ensemble analysis tech-
niques used elsewhere.

Several model outputs are put together with adequate
weights to obtain a combined estimation of meteorological
parameters. Weights are calculated by least-square mini-
mization of the difference between the model and the ob-
served field during a so-called training period. Although it
can be applied successfully on the continuous parameters like
temperature, humidity, wind speed and mean sea level pres-
sure, the Multimodel SuperEnsemble gives good results also
when applied on the precipitation, a parameter quite diffi-
cult to handle with standard post-processing methods. Here
we present our methodology for the Multimodel precipitation
forecasts, involving a new accurate statistical method for bias
correction and a wide spectrum of results over Piemonte very
dense non-GTS weather station network.

1 Introduction

Quantitative precipitation forecast (QPF) is one of the more
difficult tasks in the weather forecasts, and any attempt in
evaluating the uncertainty of the precipitation forecast con-
tributes to a better characterization of the weather effects on
the territory. The uncertainty in the QPF evaluation propa-
gates down to the hydrological evaluation of the discharge
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forecast in small and medium-sized catchments that are typ-
ical of the Mediterranean area.

From a given forecast dataset obtained from different mod-
els, many ensemble techniques can be applied, like the “poor
man” ensemble (Eq. 1), a simple average of the models (re-
quiring no training period), or a bias corrected ensemble
(Eq. 2).
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As suggested by the name, the Multimodel SuperEnsemble
method (Krishnamurti et al., 1999, 2000, 2002; Williford et
al., 2002) requires several model outputs, which are weighted
with an adequate set of weights calculated during the so-
called training period (Eq. 3).
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(
Fi −F i

)
(3)

whereN is the number of models,ai are the SuperEnsem-
ble weights,Fi is the forecast value,F i is the mean forecast
value in the training period andO is the mean observation in
the training period.

The calculation of the parametersai is given by the mini-
misation of the mean square deviation

G =

T∑
k=1

(Sk −Ok)
2 (4)

whereT is the training period length (days). By derivation
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We then solve these equations using the Gauss-Jordan
method.

In this paper, we will focus on the quantitative precipita-
tion forecast, and in detail, we firstly examine the ensem-
ble properties (Sect. 2), then we introduce a modification to
the Multimodel technique (Sect. 3) that we consider appro-
priate for this variable. In Sect. 4 we describe the results
obtained with or without this correction (Sect. 4.1), the com-
parison among Multimodel SuperEnsemble, Ensemble, and
Poor Man Ensemble (Sect. 4.2) and the performance of the
operational version of the technique which is running daily
at ARPA Piemonte (Sect. 4.3). Eventually in Sect. 5 we draw
some conclusion.

2 Ensemble evaluation

The ensemble approach and the related weighting techniques
can be easily applied on variables like temperature or wind
speed (Cane and Milelli, 2005, 2006), but a certain atten-
tion must be put in applying Multimodel SuperEnsemble on
a variable like precipitation. There are in fact theoretical and
empirical evidences to support the fact that precipitation, as
the atmospheric turbulence, has a so-called multi-fractal be-
haviour (see for instance Lovejoy et al., 1996). This implies
that similar features are observed in precipitation fields on
a continuum of spatial scales from the very small (centime-
tres) to the very large (kilometres). This also implies that
the numerical models bring along the quantitative precipita-
tion forecast not only their intrinsic error, but also the un-
certainty due to the stochastic properties of the precipitation
field. Therefore, it is important to study firstly the character-
istics of the data ensemble itself, without the application of
any weight.

A standard technique for the evaluation of the reliability
of an ensemble (that is whether the observed probability dis-
tribution is well represented by the ensemble) is the rank his-
togram (see for example Anderson, 1996 or Hamill, 2001),
obtained by counting the rank of observations with respect
to the ensemble member values. Precipitation forecast has
to be treated with care, because the value is often equal to
zero (i.e. no precipitation is forecasted or observed). In these

cases, we can find a certain number of equal forecasts and
the ranking of the observation can be among one of these
equal values. Considering the example in Fig. 1: the rank of
the observation can be assigned, is not unique. If we choose
one of these ranks systematically, we could have an uncor-
rect calculation of the rank histogram. We then applied a
random choice to all the cases where the rank is not uniquely
determined, in order not to force the data towards an artificial
distribution.

Arpa Piemonte manages a wide non-GTS weather station
network. For this work, we used the data collected in the pe-
riod March 2006–August 2008 from 342 stations. The data
were averaged over the 13 warning areas designed by ARPA
Piemonte in collaboration with the Civil Protection Depart-
ment (Fig. 2) on a 6-h basis up to +72 h and for each of them
the maximum values of observed precipitation has been as-
signed. Each warning areas so identified contains on average
26 stations, with a minimum of 11 and a maximum of 39.
The chosen spatial scale is practical for the use in an alert
system in medium- and large-scale catchments, but it is too
much coarse for the discharge calculations in the smallest
catchments. Finer resolution calculation are still under in-
vestigation.

The models used in this research work are the ECMWF
IFS global model (resolution: 0.25◦) and the 0.0625◦

resolution limited area models of the COSMO Consor-
tium covering North-Wester Italy: COSMO-I7 (developed
by USAM, ARPA-SIM, ARPA Piemonte), COSMO-EU
(Deutscher Wetterdienst) and COSMO-7 (MeteoSwiss). It
has to be highlighted that our operational implementation
(see Sect. 4.3) is based on the forecasts given by the ECMWF
model and by the Italian COSMO model only (seewww.
cosmo-model.orgfor a more comprehensive overview of the
Consortium activities and developments). The model fore-
casts are assigned to the same warning areas by taking the
average and maximum values of the gridpoints falling into
the given area. (ECMWF model:∼5 points/warning area;
COSMO models:∼56 points/warning area)

In Fig. 3 we show the rank histograms of 8 runs of the
4 models in the period September 2006–August 2008 over
all the Piemonte warning areas as described in Fig. 3. The
ensemble is in general over-dispersed, that is the ensemble
spread is too large, but it has to be pointed out that the in-
clusion of correct negatives (i.e. days of correct zero precip-
itation forecast) may artificially change the properties of the
ensemble.

If we remove all the correct negatives, although keeping
the false alarms and misses, we obtain a different rank his-
togram (Fig. 4), telling us more information: the ensemble
usually overestimates the observation (the rank histogram
peaks at low ranks), but there is a significant amount of un-
derestimated forecasts (comprising misses), as evidenced by
the higher value of the last rank column. These features are
more accentuated for the maxima forecasts over the warning
areas.
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Figure 1. Example of calculation of the rank of observation with respect to an ensemble of 

forecasts: the observation can not be assigned univocally.  

 

 

 

Figure 2. A drawing of the 13 warning areas in Piemonte region. Blue numbers represent the 

observed (or forecast) 6-hours precipitation (mm) averaged over the catchment, while red 

numbers are the maximum precipitation observed (or forecast) in the catchment.
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Fig. 2. A drawing of the 13 warning areas in Piemonte region. Blue
numbers represent the observed (or forecast) 6-h precipitation (mm)
averaged over the catchment, while red numbers are the maximum
precipitation observed (or forecast) in the catchment.

We evaluated also the scatter plots of the ensemble mean
Root Mean Square Error vs the ensemble spread (spread-skill
diagram) in Fig. 5: the linear relationship between these two
values is quite clear, and in particular the correlation coeffi-
cient for average values is quite high.

The rank histograms tell us that 88% of observations for
average values and 80% for maxima already fall into the un-
calibrated ensemble, while the scatter plot allows us to search
for a relationship between the ensemble means to optimize
the ensemble mean value. In both cases, the plots have been
obtained adding up in forecast time (up to +72 h) and in space
(over the 13 warning areas, see Fig. 5). The message that is
evident from this preliminary analysis is that the ensemble
has skill, but is not calibrated, therefore some statistical post-
processing is necessary. The chosen method, as explained
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Figure 3: Rank histogram of the observation with respect to the ensemble forecasts for 

average precipitation (a) and maximum precipitation (b) over the warning areas. 
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Figure 3: Rank histogram of the observation with respect to the ensemble forecasts for 

average precipitation (a) and maximum precipitation (b) over the warning areas. 

Fig. 3. Rank histogram of the observation with respect to the en-
semble forecasts for average precipitation(a) and maximum pre-
cipitation(b) over the warning areas.

previously, is the Multimodel SuperEnsemble (Eq. 3) which
produces a deterministic but calibrated value from a given
ensemble.

3 Multimodel evaluation of precipitation

Precipitation fields are quite difficult to handle with post-
processing techniques, although they are of great interest for
operational NWP: the use of Multimodel technique on pre-
cipitation requires great care and we developed some simple
correction to the basic method to obtain a better precipitation
forecast.

1. The weights can be calculated only once, on a suffi-
ciently long training period, and then applied during
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Figure 4: Corrected rank histogram of the observation with respect to the ensemble forecasts 

for average precipitation (a) and maximum precipitation (b) over the warning areas. 
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Figure 4: Corrected rank histogram of the observation with respect to the ensemble forecasts 

for average precipitation (a) and maximum precipitation (b) over the warning areas. 

Fig. 4. Corrected rank histogram of the observation with respect to
the ensemble forecasts for average precipitation(a) and maximum
precipitation(b) over the warning areas.

the forecast time. We are using instead a moving win-
dow for the calculation of the weights: for each day,
point and forecast time we evaluate the availability of
models and then we calculated weights in the past with
the given model number and dataset. This technique
is more expensive than a fixed weight calculation, but
gives better results and is more flexible for an opera-
tional use (Cane and Milelli, 2006).

2. In case of very scarce forecasted precipitation, it is pos-
sible to have a spurious bias from the method. Let we
consider for example 8 models, 2 of them forecasting
1–2 mm for a given forecast time and the others 0 mm:
looking at (Eq. 3), the result is a non-zero precipitation
even if probably a zero precipitation should be the best
forecast. We then developed a bias correction method-
ology based on contingency table evaluation during the
training period. For each model we calculate the False
Alarm Rate (FAR) and Hit Rate (HRR) and, treating
them as independent probabilities, we evaluate the Mul-
timodel FAR and HRR by multiplying the Z models
having precipitation indices with the reverse indices of
the other N-Z models:
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Figure 5: Ensemble mean Root Mean Square Error vs ensemble spread for average 

precipitation (a) and maximum precipitation (b) over the warning areas. 
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Figure 5: Ensemble mean Root Mean Square Error vs ensemble spread for average 

precipitation (a) and maximum precipitation (b) over the warning areas. 

 

 

Fig. 5. Ensemble mean Root Mean Square Error vs ensemble spread
for average precipitation(a) and maximum precipitation(b) over
the warning areas.

FARMM =

Z∏
i=1

FARi ·

N-Z∏
i=1

(1−FARi) (6)

HRRMM =

Z∏
i=1

HRRi ·

N-Z∏
i=1

(1−HRRi) (7)

The Multimodel SuperEnsemble and Ensemble are set to 0
if FARMM >= HRRMM , that is to say, if the probability of
an incorrect rain forecast is higher than the probability of a
correct forecast.

4 Results

4.1 Bias-corrected vs. uncorrected Multimodel

Firstly we compared the behaviour of the original Su-
perEnsemble with respect to the one with the correction in-
troduced in Sect. 3. In Fig. 6 we report the verification in-
dices (Wilks, 1995) for Bias-corrected and uncorrected Mul-
timodel on average and maximum values, calculated in the
period September 2006–August 2008 using 8 runs of the
4 models from +12 h to +36 h. The training period is obtained
with a moving window of 365 days.
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Fig. 6. Verification indices for Bias-corrected and uncorrected Multimodel as a function of the threshold (mm) for +12 h/+36 h forecasts.
Average values (left) and maximum values (right) BIAS, HRR and FAR.

The bias correction has a neutral to positive impact: in
particular, there is a significant improvement for low thresh-
olds, with a reduction of the bias and of the FAR, while for
high thresholds the two methods basically do not differ. This
analysis is more evident for the maximum values. The im-
pact on the lower thresholds is expected because the rain/no-
rain limit has probably the largest uncertainty in the models
(and this permits to have some improvement), while in case
of a structured rain event, all the models can describe it (even
though there are differences in the values) because the syn-
optic forcing is more clear.

4.2 Multimodel SuperEnsemble, Ensemble,
and Poor Man Ensemble

In the following step of the work we compared Multimodel
SuperEnsemble (Eq. 3), Ensemble (Eq. 2), and Poor Man En-
semble (Eq. 1) in the period September 2006–August 2008
using 8 runs of the 4 models from +12 h to +36 h. The bias
correction as described before (Sect. 3) is applied for each
of them. As expected (Krishnamurti et al., 1999), in this
case there is a clear difference between the three techniques
(Fig. 7): Poor Man Ensemble shows a quite high BIAS, re-
sulting in a strong FAR. SuperEnsemble and Ensemble show
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Fig. 7. Verification indices for Multimodel Ensemble, SuperEnsemble and Poor Man Ensemble as a function of the threshold (mm) for
+12 h/+36 h forecasts. Average values (left) and maximum values (right) BIAS, HRR and FAR.

a very good reduction of the BIAS, very close to 1. There
are few differences among SuperEnsemble and Ensemble for
maximum values (we guess that the use of weights is not so
helpful in this case because the bias reduction applied with
the ensemble is the biggest contribution to the error reduc-
tion), while for average values the SuperEnsemble shows a
good reduction of FAR, with a lower HRR with respect to
Ensemble.

4.3 Operational forecasts: a comparison with the Direct
Model Outputs (DMO)

Eventually, we analysed the results of our operational suite,
obtained with the Multimodel SuperEnsemble applied on
the ECMWF IFS global model and on the COSMO-I7 limi-
ted area model in the period September 2006–August 2008
using 4 runs of the 2 models from +12 h to +36 h. Again,
the contingency table correction has been applied. The post-
processed data perform always better than the original mod-
els, with a sensitive bias reduction both on average and max-
imum values (Fig. 8). ECMWF shows a lower FAR for max-
ima, but this is clearly due to the strong under-biasing due
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FIG. 8 Fig. 8. Verification indices for Multimodel SuperEnsemble ECMWF IFS 00:00 UTC and 12:00 UTC, and COSMO-I7 00:00 UTC and

12:00 UTC runs as a function of the threshold (mm) for +12 h/+36 h forecasts. Average values (left) and maximum values (right) BIAS,
HRR and FAR.

to the different horizontal resolution of the model in compar-
ison to the others. ECMWF gives a smoother precipitation
field and it is less prone to double-penalty errors that penal-
ize the LAMs. For this reason the use of ECMWF together
with the LAMs introduces a small added value also in maxi-
mum forecasts, because it usually underestimates values, but
it is more reliable in time and space.

We could say that Multimodel SuperEnsemble is able to
catch the best behaviour from each model: the lowest FAR
for average values, with a BIAS slightly lower than 1; for
maximum values a BIAS comparable with COSMO-I7, but
better HRR and FAR.

Figure 9 shows the same comparison, for fixed signifi-
cant thresholds, as a function of the season. SuperEnsem-
ble is able to provide a stable-in-time performance, almost
always better than the original models: in fact the BIAS is
stably close to 1, the HRR is slightly lower for the average
values and higher for maximum values and the FAR is sig-
nificantly lower than the models (for maximum values only
COSMO-I7 has to be taken into account due to the strong
under-biasing of ECMWF).

The strong positive bias peak shown by the DMOs in Fig. 9
for DJF 2008 is probably due to a significant decrease of
precipitation observed during the period with respect to the
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Fig. 9. Verification indices for Multimodel SuperEnsemble ECMWF IFS 00:00 UTC and 12:00 UTC, and COSMO-I7 00:00 UTC and
12:00 UTC runs for +12 h/+36 h forecasts. Average values, threshold 10 mm (left) and maximum values, threshold 35 mm (right) BIAS,
HRR and FAR.

climatology (around –40% compared to the 1971–2000 ave-
rage values from Arpa Piemonte archive); Multimodel Su-
perEnsemble is able to correct also this data effectively.

5 Conclusions and future perspectives

Given the fact that a probabilistic approach to precipitation
forecast would be better than a deterministic one, because
the quantification of the uncertainties would help the warn-
ing and decision-making process, we observed that the en-
semble here considered is over-dispersed and uncalibrated.
Therefore, the possible solutions are either the application
of some calibration method (such as for instance BMA, see
Raftery et al., 2005), or the construction of a super ensem-
ble which is still deterministic. The latest approach is much
easier than a BMA, hence it can be considered as a first step.

BMA itself it is not easy to implement in the case of precip-
itation forecast, because the estimation of the precipitation
PDF is a very tricky task.

The Multimodel SuperEnsemble technique has been al-
ready applied in a number of different cases, frameworks and
circumstances, but to the authors’ knowledge, the applica-
tions to the precipitation field are quite scarce. The reason is
obviously due to the peculiar characteristics of this variable.
We have here introduced a correction method that corrects
the QPF at least for low thresholds, reducing considerably
the FAR.

We have then showed that this corrected SuperEnsemble
has an added value with respect to the simple bias-corrected
Ensemble, to the Poor-Man Ensemble and to the Direct
Model Output (DMO) since, in general, the error is more
stable with respect of threshold and time.
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We are now working on Multimodel SuperEnsemble error
evaluation methods, including bootstrap, and on ensemble
calibration methods, in order to keep a probabilistic point of
view. We are trying to evaluate the correct PDF of the Multi-
model forecasts starting from the observed PDF conditioned
to the forecasts, combining Multimodel SuperEnsemble and
a BMA-like ensemble dressing: the first results are encour-
aging and we are planning to apply the so-found probabilistic
precipitation forecasts as the input of our hydrologic chain,
in order to evaluate the uncertainties in the discharge calcu-
lations. The use of finer spatial resolution (for example: at
station locations) will be necessary for this application.

Moreover we are working on the downscaling of Regional
Climatic Models with a Multimodel SuperEnsemble tech-
nique: in this case we use as training period the control runs
and we apply the weights calculated in this period to the
model scenarios.
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