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Abstract. A numerical model based on the mild slope equa-
tion, suitable to reproduce the propagation of small ampli-
tude tsunamis in the far field, is extended to reproduce the
generation and the propagation of waves generated by land-
slides. The wave generation is modeled through a forcing
term included in the field equation, which reproduces the ef-
fects of the movement of a submerged landslide on the fluid.
The measurements of three dimensional laboratory experi-
ments, which simulate tsunamis generated by landslide slid-
ing along the flank of a conical island, are compared with the
theoretical calculation results. The present approach is also
compared with the similar method of Tinti et al. (2006) used
for the generation of these waves in depth integrated model,
and the different behavior when using frequency-dispersive
and non-dispersive equations is highlighted.

1 Introduction

Tsunamis are long water waves generated by geophysi-
cal events, like earthquakes, landslides, submarine volcanic
eruptions, etc. (Wiegel, 1955). These events produce sudden
movements of the sea/ocean floor or of the water free surface,
generating waves. Many different approaches and simplifica-
tions can be used to reproduce numerically/mathematically
tsunamis. The most accurate models are those resolving the
full three-dimensional equations of the fluid dynamics, e.g.
the Navier-Stokes equations. Example of such models are
those developed by Liu et al. (2005) and by Grilli et al. (1999,
2002). These models are computationally expensive and al-
low the simulation of the considered phenomena over rela-
tively small geographical areas, typically of the order of a
few km2.
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When studying the propagation of tsunamis over large
areas, i.e. at the oceanic scales, depth integrated models are
certainly more appropriate. They represent a good com-
promise between accuracy of the results and computational
costs. Traditionally these models are based on the nonlinear
shallow water equations, in view of the fact that tsunamis are
considered to be very long waves if compared to the water
depth where they propagate. However in the recent past it
has become well accepted that this kind of waves is a wave
packet, that in most cases may exhibit a frequency-dispersive
behavior. The Boussinesq-type equations (BTE, Peregrine,
1967) have therefore become a standard tool for the simula-
tion of tsunamis. These equations allow the reproduction of
weakly nonlinear, weakly frequency-dispersive water waves,
although recently new formulations of these equations can be
applied to wider conditions. Moreover the wave frequency-
dispersive behavior becomes more evident for tsunamis gen-
erated by landslides, where the spatial extent of the source is
usually not much larger than the water depth. One problem
that arises when reproducing tsunamis with depth integrated
models, is that, other than in shallow water approximation,
it is not always possible to rigorously incorporate the effects
of the movements of the sea floor into the equations, in order
to reproduce the generation of waves due to earthquakes or
landslides.

Jiang and LeBlonde (1994) have presented a numerical
model to simulate the generation due to submarine mudslide,
where the generated waves are governed by the nonlinear
shallow water equations forced by the time variation of the
sea bottom which is totally transferred to the free water sur-
face. Tinti at al. (2001) have presented an analytical investi-
gation of long water waves excited by rigid bodies sliding on
the sea bottom, based on the linear shallow water equations.
Their problem is based on the hyperbolic wave equation that
includes a forcing term, defined as the second derivative in
time of the varying water depth, modified by the passage of
the landslide. Furthermore the paper of Tinti et al. (2006)

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2260 C. Cecioni and G. Bellotti: Landslide tsunamis in depth integrated model

shows the same technique applied in the framework of the
nonlinear shallow water equations, and a filter function is
introduced in the forcing term of the continuity equation in
order to take into account when the slide length is no more
much larger than the water depth. The continuity equation is
formulated as follows

ηt +∇h ·(vh) = −ht

1

cosh(ksh)
(1)

whereη(x,y,t) is the free water surface,v(x,y,z,t) is the
fluid particle velocity,h(x,y,t) = hf(x,y)−hl(x,y,t) is the
water depth function defined as the fixed sea floor depth (hf)
minus the thickness of the moving landslide (hl). ks is the
landslide length parameter, equal to 2π/Ls, whereLs is the
landslide length. Note that the water depth variation, due
to the movements of the landslide, is filtered by means of a
function which depends on the water depth and on the land-
slide length.

Alternatively, Watts et al. (2003) have proposed a tool
namely the Tsunami Open and Progressive Initial Conditions
System (TOPICS). Given the properties of the landslide, it al-
lows calculation of proper initial conditions (in terms of wa-
ter surface elevation and horizontal velocities of the fluid),
that can be provided to depth-integrated models in order to
represent the effects of the landslide on the waves. Moreover,
Watts et al. (2005) presented numerical model application
which simulates the generation and propagation of the Indian
Ocean tsunami of 26 December 2004. They split the tsunami
generating fault into four segments, and the vertical dislo-
cation along each segment was given as input to the TOP-
ICS software, which by means of the Okada formula (Okada,
1985) provide, as output, a characteristic wave length and
tsunami initial amplitude. Then they simulate the tsunami
propagation solving the higher-order Boussinesq equations
in their FUNWAVE model. A further method is that devel-
oped by Lynett and Liu (2002, 2005), who have re-derived
a Boussinesq-like set of equations that directly incorporates
the effects of the movements of the bottom induced by the
landslide. They have used scaling lengths that consider also
the relative depth of the landslide, also providing guidance on
the importance of frequency-dispersion and waves/landslide
nonlinearity.

In this paper we describe and validate in more detail a
method based on the depth integrated mild slope equation
(hereinafter MSE), that we have already described in our pre-
vious paper Cecioni and Bellotti (2010). In that work we in-
troduced heuristically a new function for the incorporation
of the effects of the moving sea floor to reproduce the waves
generation. The resulting forcing term which appears in the
MSE is similar to that of Tinti et al. (2006), right hand side
term of Eq. (1), but the filter function depends on the wave
length instead of the landslide length. In Cecioni and Bel-
lotti (2010) it was shown that the new technique is very ac-
curate in the limits of mild slope sea bottom and small am-
plitude waves and landslide and it appears essential when ap-

plying frequency-dispersive equations. The wave generation
in the depth integrated model was validated with a full three-
dimensional numerical computations.

Here we make a step forward and we present the analytical
derivation of the source term, starting from the depth inte-
gration of the Laplace equation with the appropriate moving
bottom boundary conditions. Moreover we validate for the
first time the model results using experimental data in a full
three-dimensional layout. The data used are those presented
by Di Risio et al. (2009) and Bellotti et al. (2009) and re-
fer to the wave field generated around a conical island by a
rigid body sliding down the flank of the island itself. The
experimental layout was designed in order to reproduce ap-
proximately the case of Stromboli island (South Tyrrhenian
Sea), scaled using the Froude law of 1:1000. The compu-
tations presented in this paper appear to be a very realistic
study case. Stromboli is a volcanic island prone to tsunami
generation along its own coast. On 30 December 2002 two
tsunamis generated by landslides detached by the Sciara del
Fuoco flank, attacked the coast devastating the small village
of the island (Tinti et al., 2005).

In the next section the MSE with the forcing term is de-
rived, while in the followings, first a short description of the
physical model is given, then the comparison results are pre-
sented and discussed. Finally conclusions are given.

2 Derivation of model equation

The model equation can be obtained starting from the linear
(small amplitude) water wave equations for an incompress-
ible irrotational fluid on an uneven bottom

∇
2
hφ+φzz= 0 −h(x,y,t) < z < 0 (2)

φz+
1

g
φtt = 0 z = 0 (3)

φz+ht +∇hφ ·∇hh = 0 z = −h(x,y,t), (4)

where φ(x,y,z,t) is the velocity potential in the fluid,
h(x,y,t) is the water depth, defined as the fixed sea floor
depth minus the landslide thickness,h(x,y,t) = hf (x,y)−

hl (x,y,t). g is the gravity acceleration, while∇h is the differ-
ential operator which means the divergence in the horizontal
coordinates(x,y) and the symbol· stays for the scalar prod-
uct. All these variables are real and scalar. Equation (2) is
the Laplace equation, Eq. (3) includes the dynamic and kine-
matic boundary conditions at the free water surface, while
Eq. (4) is the bottom boundary condition which reproduces
the sea floor movements allowingh to varies in time. We fol-
low the procedure described by Svendsen (2005), who starts
from the Laplace equation and the free surface and bottom
boundary conditions to derive the MSE, with the difference
that here we take into account a moving sea floor. The solu-
tion of the given problem is assumed to be of the form

φ(x,y,z,t) = ϕ(x,y,t)f (z) (5)

whereϕ(x,y,t) is the velocity potential at the undisturbed
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free water surfacez = 0, which can be complex and it in-
cludes the effects of reflected waves;f (z) is a function
that describes how the kinematic field varies along the wa-
ter depth and can be chosen as that resulting from the linear
wave theory valid for harmonic waves propagating in con-
stant depth, which however still holds locally for uneven bot-
tom, i.e.

f (z) =
cosh[k(hf +z)]

cosh(khf)
(6)

wherek is the wave number, defined as 2π/L with L the
wave length. In the cases of not constant depth,hf and there-
fore k vary with the horizontal coordinates, thereforef =

f (x,y,z). However, if the mild slope assumption∇hhf
khf

� 1
is here introduced the variation of the functionf with the
horizontal coordinates can be neglected if compared with the
vertical one.

From the assumption (5) it comes that

φzz= k2ϕ
cosh[k(hf +z)]

cosh(khf)
= k2φ (7)

therefore the Laplace equation (2) can be written as

∇
2
hφ+k2φ = 0 (8)

The following considerations are made:

f (z) = 1 at z = 0

fz = k tanh(khf) =
ω2

g
at z = 0;

fz = 0 at z = −h;

(9)

In order to depth integrate the field equation (Laplace
equation2), here it is made use of the Gauss’s Theorem,
which states for one dimensional domain∫ b

a

∂v

∂x
dx = v(b)−v(a) (10)

wherev is a differentiable vector field. By considering a spe-
cial vector field defined asv = φ1∇φ2, whereφ1 andφ2 are
arbitrary differentiable scalar functions, the Gauss theorem
can be written as∫ b

a

[
φ1

∂2φ2

∂x2
+

∂φ1

∂x

∂φ2

∂x

]
dx=

[
φ1

∂φ2

∂x

]
b

−

[
φ1

∂φ2

∂x

]
a

(11)

Equation11 is known as Green’s theorem. Interchanging
φ1 andφ2 and subtracting the resulting equation from (11)
gives∫ b

a

[
φ1

∂2φ2

∂x2
−φ2

∂2φ1

∂x2

]
dx =

[
φ1

∂φ2

∂x
−φ2

∂φ1

∂x

]b

a

(12)

For the present purpose Eq.12 is used withx = z, φ1 =

f (z) andφ2 = φ(x,y,z,t), therefore∫ 0

−h

(
f

∂2φ

∂z2
−φ

∂2f

∂z2

)
dz =

[
f

∂φ

∂z
−φ

∂f

∂z

]
0

−

[
f

∂φ

∂z
−φ

∂f

∂z

]
−h

(13)

Substituting the Laplace equation (2) in the first term at the
left hand side (LHS), and the boundary conditions atz = 0
andz = −h (3 and4) and using Eqs. (9) in the right hand side
(RHS) terms, then, after changing the sign, Eq. (13) becomes∫ 0

−h

(
f ∇

2
hφ+k2f φ

)
dz =

1

g
ϕtt +ϕ

ω2

g
− [f ht ]−h

−[f ∇hh ·∇hφ]−h (14)

the LHS can be seen as the integration over the depth of
the field equation. Considering that

∇hφ = ∇h(ϕf ) = f ∇hϕ+ϕ∇hf (15)

and

∇
2
hφ = f ∇

2
hϕ+2∇hϕ ·∇hf +ϕ∇

2
hf (16)

using the expression (15) for the last term of the RHS and ex-
pression (16) for the first term of the LHS, Eq. (14) becomes∫ 0

−h

(
f 2

∇
2
hϕ+2f ∇hf ·∇hϕ+f ϕ∇

2
hf +k2f 2ϕ

)
dz =

1
g

(
ϕtt +ω2ϕ

)
−

1
cosh(khf)

ht − [f ∇hh ·(f ∇hϕ+ϕ∇hf )]−h

(17)

Now incorporating the first two terms of the LHS of Eq. (17)
follows∫ 0

−h

∇h ·

(
f 2

∇hϕ
)
dz+

[
f 2

∇hh ·∇hϕ
]
−h

+ϕk2
∫ 0

−h

f 2dz

= −

∫ 0

−h

ϕf ∇
2
hf dz−

1

cosh(khf)
ht −ϕ∇hh · [f ∇hf ]−h

+
1

g

(
ϕtt +ω2ϕ

)
(18)

Applying the Leibniz’s rule for the first two terms on the
LHS and knowing that∫ 0

−h

f 2dz =
ccg

g
(19)

wherec andcg are respectively the phase and the group ve-
locities, by multiplying Eq. (18) for g it results

∇h ·
(
ccg∇hϕ

)
+ϕk2ccg−ϕtt −ω2ϕ+ht

g

cosh(khf)

= −gϕ

{∫ 0

−h

f ∇
2
hf dz+∇hh · [f ∇hf ]−h

}
(20)

Rigorously the identity of Eq. (19) is obtained for a sin-
gle frequency of the wave spectrum, consequently Eq. (20)
is valid for monochromatic waves, or can be seen as repre-
sentative of narrow banded spectra sea state around a carry-
ing frequency. The RHS terms of Eq. (20) can be shown to
be O

(
(∇hh)2,∇2

hh
)
. Therefore, as we introduced the mild

slope assumption above, i.e.: by allowing Eq. (6), ∇hh � kh

and it can be argued that the RHS terms� LHS terms. Sim-
ilarly, ∇

2
hh � ∇hh, which is a natural additional assumption

because∇2
hh = O(∇hh) can only occur over short distances
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without changingO(∇hh). This means that the RHS terms
are� of all the others terms, we therefore get

ϕtt −∇h ·
(
ccg∇hϕ

)
+

(
ω2

−k2ccg

)
ϕ = −

g

cosh(khf)
ht (21)

which is the hyperbolic version of the MSE in terms of fluid
velocity potential and is usually referred to as the “time-
dependent mild-slope equation”, allowing the simulation in
the time-domain of the wave propagation. To obtain the MSE
in terms of the free surface elevationη, Eq. (21) needs to be
differentiated with respect to time.

ϕttt−∇h ·
(
ccg∇hϕt

)
+

(
ω2

−k2ccg

)
ϕt=−

g

cosh(khf)
htt (22)

and then use the dynamic boundary condition at the free sur-
face

η = −
1

g
ϕt (23)

from which we obtain thatϕt = −gη andϕtt = −gηt , those
expressions can be substituted into Eq. (22) to get, after di-
viding byg

−ηtt+∇h ·
(
ccg∇hη

)
−

(
ω2

−k2ccg

)
η=−

1

cosh(khf)
htt (24)

which is the hyperbolic version of the MSE in terms of water
free surface elevation. Note that if the phase and group veloc-
ities are evaluated in the shallow water limit asc = cg =

√
gh,

then Eq. (24) reduces to the governing equation for forced
long waves

ηtt −∇h ·(gh∇hη) =
1

cosh(khf)
htt (25)

As said the time dependent MSE is not able to reproduce
broad banded spectra sea state, due to the fact that Eq. (24)
contains some coefficients which have to be calculated for
each wave frequency component. By employing the spec-
tral approach, the model can on the contrary cover a broad
spectrum wave field, typical of tsunamis, since for each wave
frequency a dedicated elliptical equation is solved and, due
to the linearity of the equations, superimposition of all the
solutions is allowed.

The elliptic version of the MSE can be obtained by taking
the Fourier Transform of Eq. (24), then it comes

∇h ·
(
ccg∇hN

)
+k2ccgN = −

1

cosh(khf)
ff t (htt) (26)

where N(x,y,ω) is the Fourier Transform ofη(x,y,t).
Equation (26) is similar to the elliptic MSE as derived by
Berkhoff (1972), but it includes a source term of generating
waves. Once Eq. (26) is solved, one for each frequencyω,
with the appropriate boundary conditions, the result in the
time domain can be achieved by taking the Inverse Fourier
Transform ofN(x,y,ω) to obtainη(x,y,t). For details see
Bellotti et al. (2008).

3 Physical model description

The results of physical model experiments, which aim at
studying the tsunami wave field generated by landslide, have
been used in order to validate the tsunami generation numer-
ical model. The physical model was built in a large wave
tank at the Research and Experimentation Laboratory for
Coastal Defense (LIC) of the Technical University of Bari,
Italy, in cooperation with the Environmental and Maritime
Hydraulics Laboratory Umberto Messina (LIAM) of the Uni-
versity of L’Aquila, Italy.

The laboratory experiments (Di Risio et al., 2009) simu-
late a landslide body falling on the flank of a conical island,
built in order to approximately reproduce in scale 1:1000 the
Stromboli island, in South Tyrrhenian Sea, Italy (Tinti et al.,
2005). The physical model consists in a wave tank, 30.00 m
wide, 50.00 m long and 3.00 m deep; at the center of the
tank is placed a conical island, built using PVC sheets (thick-
ness 0.01 m) and sustained by a steel frame, with a radius of
4.47 m at the tank bottom level. The slope of the flanks of the
island is 1:3 (1 vertical, 3 horizontal). In Fig.1 it can be seen
a layout of the wave tank with the conical island (left figure)
and a picture of the landslide model on the top of the island
(right figure).

Experiments have been carried out varying the water
depth, and consequently the shoreline curvature radius, and
by varying the initial distance of the landslide from the undis-
turbed shoreline. The landslide model is a rigid body, with
the shape of half of the ellipsoid described by the equation
x2/a2

+y2/b2
+z2/c2

= 1, wherea = 0.2 m, b = 0.4 m and
c = 0.05 m, for a total volumeV = 0.0084 m3. The landslide
is constrained to slide down the inclined island surface by
means of rails. Traditional resistive gauges were employed
to register the instantaneous vertical displacement of the free
surface. All the signals have been acquired simultaneously
at a frequency of 1000 Hz. The relative positions of all the
gauges can be found in Fig.2 and in Table1. In Table1
the gauges position is calculated in polar coordinates with
the origin in the impact point (see Fig.2) and the angular
position taken counterclockwise from the landslide motion
direction.

As an exercise we have superimposed the laboratory ex-
periments layout scaled of 1000 times using the Froude law,
to the map of Stromboli island (Fig.3). The Figure gives an
idea of the similarities between the two problems. The scaled
position of the surface level measurements points is also re-
ported. Given the similarity between laboratory and field
cases, Bellotti et al. (2009) have investigated on the feasi-
bility of Tsunami Early Warning Systems for small volcanic
islands focusing on warning of waves generated by landslides
at the coast of the island itself.
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As said the time dependent MSE is not able to reproduce broad banded spectra sea state, due

to the fact that Eq. (26) contains some coefficients which have to be calculated for each wave

frequency component. By employing the spectral approach, the model can on the contrary cover a

broad spectrum wave field, typical of tsunamis, since for each wave frequency a dedicated elliptical

equation is solved and, due to the linearity of the equations, superimposition of all the solutions is

allowed.

The elliptic version of the MSE can be obtained by taking the Fourier Transform of Eq. (26), then

it comes

∇h · (ccg∇hN) + k2ccgN = − 1

cosh (khf )
fft (htt) (28)

whereN (x, y, ω) is the Fourier Transform ofη (x, y, t). Eq. (28) is similar to the elliptic MSE

as derived by Berkhoff (1972), but it includes a source term of generating waves. Once Eq. (28) is

solved, one for each frequencyω, with the appropriate boundary conditions, the result in the time

domain can be achieved by taking the Inverse Fourier Transform of N (x, y, ω) to obtainη (x, y, t).

For details see Bellotti et al. (2008).

3 Physical model description

New physical experiments, which aim at studying the tsunamiwave field generated by landslide,

have been used in order to validate the tsunami generation numerical model. The physical model

was built in a large wave tank at the Research and Experimentation Laboratory for Coastal Defense

(LIC) of the Technical University of Bari, Italy, in cooperation with the Environmental and Maritime

Hydraulics Laboratory Umberto Messina (LIAM) of the University of L’Aquila, Italy.

Fig. 1. Sketch of the layout of the laboratory experiments (left, measures inm) and picture of the landslide and

island models (right).

The laboratory experiments (Di Risio et al., 2009) simulatea landslide body falling on the flank

7

Fig. 1. Sketch of the layout of the laboratory experiments (left, measures in m) and picture of the landslide and island models (right).

Table 1. Angular and radial position of Sea Level gauges: the point
where the landslide impacts the water is taken as the origin, and
the angular position is taken counterclockwise from the landslide
motion direction (see Fig.2).

Gauge name Angular position Radialposition
θ (◦) r (m)

12S 54.3 0.63
11S −84.4 0.76
20S 44.9 0.92
7S 29.2 1.82

15S −0.3 2.37
24S 0.8 4.55
22S 19.5 4.79
16S −29.7 4.91

4 Comparison of physical and numerical model results

We have reproduced numerically the experiments described
by Di Risio et al. (2009). Here we describe in details the
results of just one test, defined by the off-shore constant wa-
ter depth of 0.80 m, and consequently the shoreline radius of
2.07 m, and characterized by an aerial landslide which falls
from a distance ofζ = 0.30 m from the undisturbed shore-
line. All the laboratory experiments tested reproduce aerial
landslides, while the numerical model is able to simulate
just underwater sea floor movements. Therefore the entering
phase of the landslide, when it acts as a piston and transfers
impulsive energy to the fluid, it is not reproduced numeri-
cally.

The computations have been carried out on a two-
dimensional domain, sketched in Fig.4. In order to save
computational costs, not all the wave tank was modeled.
Taking advantage of the fact that the problem is symmetric
across the landslide motion direction, we reproduced only
one half of the domain, i.e. the one on the left side, following
the landslide trajectory. Therefore the position of the gauges

of a conical island, built in order to approximately reproduce in scale 1:1000 the Stromboli island, in

South Tyrrhenian Sea, Italy (Tinti et al., 2005). The physical model consists in a wave tank, 30.00m

wide, 50.00m long and 3.00m deep; at the center of the tank is placed a conical island, built using

PVC sheets (thickness 0.01m) and sustained by a steel frame, with a radius of 4.47m at the tank

bottom level. The slope of the flanks of the island is 1:3 (1 vertical, 3 horizontal). In Fig. 1 it can

be seen a layout of the wave tank with the conical island (leftfigure) and a picture of the landslide

model on the top of the island (right figure).

Fig. 2. Layout of the laboratory gauges positions.

Experiments have been carried out varying the water depth, and consequently the shoreline cur-

vature radius, and by varying the initial distance of the landslide from the undisturbed shoreline.

The landslide model is a rigid body, with the shape of half of the ellipsoid described by the equation

x2/a2 + y2/b2 + z2/c2 = 1, wherea = 0.2m, b = 0.4m andc = 0.05m, for a total volumeV

= 0.0084m3. The landslide is constrained to slide down the inclined island surface by means of

rails. Traditional resistive gauges were employed to register the instantaneous vertical displacement

of the free surface. All the signals have been acquired simultaneously at a frequency of 1000Hz.

The relative positions of all the gauges can be found in Fig. 2and in table 1. In table 1 the gauges

position is calculated in polar coordinates with the originin the impact point (see Fig. 2) and the

angular position taken counterclockwise from the landslide motion direction.

As an exercise we have superimposed the laboratory experiments layout scaled of 1000 times

using the Froude law, to the map of Stromboli island (Fig. 3).The Figure gives an idea of the

similarities between the two problems. The scaled positionof the surface level measurements points

is also reported. Given the similarity between laboratory and field cases, Bellotti et al. (2009) have

investigated on the feasibility of Tsunami Early Warning Systems for small volcanic islands focusing

on warning of waves generated by landslides at the coast of the island itself.

8

Fig. 2. Layout of the laboratory gauges positions.

Table 1. Angular and radial position of Sea Level gauges: the point where the landslide impacts the water is

taken as the origin, and the angular position is taken counterclockwise fromthe landslide motion direction (see

Fig. 2).

Gauge Angular position Radial position

name θ (◦) r (m)

12S 54.3 0.63

11S -84.4 0.76

20S 44.9 0.92

7S 29.2 1.82

15S -0.3 2.37

24S 0.8 4.55

22S 19.5 4.79

16S -29.7 4.91

Fig. 3. Sketch of the bathymetry around Stromboli and Panarea islands (South Tyrrhenian Sea), where we

have superimposed the layout of the physical model, with the gauges positions, scaled of 1000 times using the

Froude law.

4 Comparison of physical and numerical model results

We have reproduced numerically the experiments described by Di Risio et al. (2009). Here we

describe in details the results of just one test, defined by the off-shore constant water depth of 0.80

9

Fig. 3. Sketch of the bathymetry around Stromboli and Panarea
islands (South Tyrrhenian Sea), where we have superimposed the
layout of the physical model, with the gauges positions, scaled of
1000 times using the Froude law.
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m, and consequently the shoreline radius of 2.07m, and characterized by an aerial landslide which

falls from a distance ofζ = 0.30m from the undisturbed shoreline. All the laboratory experiments

tested reproduce aerial landslides, while the numerical model is able to simulate just underwater sea

floor movements. Therefore the entering phase of the landslide, when it acts as a piston and transfers

impulsive energy to the fluid, it is not reproduced numerically.

The computations have been carried out on a two-dimensionaldomain, sketched in Fig. 4. In

order to save computational costs, not all the wave tank was modeled. Taking advantage of the

fact that the problem is symmetric across the landslide motion direction, we reproduced only one

half of the domain, i.e. the one on the left side, following the landslide trajectory. Therefore the

position of the gauges located on the other side, i.e.180◦ < θ < 360◦ (see Fig. 2 and table 1), have

been mirrored across the landslide motion direction. Furthermore the numerical domain is contained

inside a circular border located at a distance of 8.00m from the island centre.

Fig. 4. Numerical domain of the depth integrated model. The numbers 2.07, 4.47 and 8.00 express the radii in

meters of respectively the undisturbed shoreline, the island base at the tank bottom, and the external circular

boundary.

At the internal circular border (the undisturbed shoreline) the reflection condition is imposed and

a minimum water depth of 0.0001m is guaranteed. Along the external circular boundary the waves

are allowed to freely exit the computational domain. The landslide falls down in the direction of

the right-bottom border, as sketched in Fig. 4. At that boundary the fully reflection condition is

imposed in order to take into account the symmetric half of the domain which is not simulated. For

more details about the implementation of the boundary conditions, the reader is addressed to the

paper of Bellotti et al. (2008). The water depth functionh (x, y, t), which takes into account the sea

floor motion, due to the landslide, is calculated by knowing the landslide shape and movement. The

second derivative in time of the function,htt (x, y, t), is carried out using a numerical approximation

and its Fourier transform is applied, in order to insert it into the field Eq. (28).

The time series reproduced is of 50s, using a∆t of 0.01s, resulting in a total of 5000 time steps,

that correspond to the same number of frequency components.In order to save computational costs

just the first 100 angular frequencies are solved, ranging between2π ·0.02 < ω < 2π ·2. The higher
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Fig. 4. Numerical domain of the depth integrated model. The num-
bers 2.07, 4.47 and 8.00 express the radii in meters of respectively
the undisturbed shoreline, the island base at the tank bottom, and
the external circular boundary.

located on the other side, i.e. 180◦ < θ < 360◦ (see Fig.2 and
Table1), have been mirrored across the landslide motion di-
rection. Furthermore, the numerical domain is limited by a
circular border located at a distance of 8.00 m from the island
centre.

At the internal circular border (the undisturbed shoreline)
the reflection condition is imposed and a minimum water
depth of 0.0001 m is guaranteed. Along the external circu-
lar boundary the waves are allowed to freely exit the com-
putational domain. The landslide falls down in the direction
of the right-bottom border, as sketched in Fig.4. At that
boundary the full reflection condition is imposed in order to
take into account the symmetric half of the domain which
is not simulated. For more details about the implementa-
tion of the boundary conditions, the reader is addressed to
the paper of Bellotti et al. (2008). The water depth func-
tion h(x,y,t), which takes into account the sea floor motion,
due to the landslide, is calculated by knowing the landslide
shape and movement. The second derivative in time of the
function,htt(x,y,t), is carried out using a numerical approx-
imation and its Fourier transform is applied, in order to insert
it into the field Eq. (26).

The time series reproduced is of 50 s, using a1t of 0.01 s,
resulting in a total of 5000 time steps, that correspond to
the same number of frequency components. In order to save
computational costs just the first 100 angular frequencies are
solved, ranging between 2π ·0.02< ω < 2π ·2. The higher
frequency corresponds, for the considered water depth, to a
wave length which slightly varies around the value of 0.4 m.
Therefore the numerical simulation, carried out with a finite
element method, uses triangular linear elements with max-
imum size of 0.04 m, in order to ensure the minimum of
10 points per wave length.

Figure5 shows the comparison of the free water surface
elevation at the 8 sea-level gauges (see Fig.2) as measured
in the physical model (thick black lines) and as calculated by
the numerical model (thin black lines). In the same figure
are also presented the results of other numerical simulations
(thin red lines) which refer to the solution of the elliptic MSE
but using the source term as the one proposed by Tinti et
al. (2006). In this case the right hand side of Eq. (26) contains
ks instead ofk. The panels are ordered with the distance from
the impact point, i.e. where the landslide firstly impacts the
undisturbed shoreline. Note that not all the panels have the
same axes limits.

Looking at the water surface displacements it can be noted
that the landslide generates first a positive elevation of the
mean sea level, which is even the maximum one close to the
generation area (at gauges 12S, 11S and 20S). While propa-
gating offshore the first crest decreases and the maximum sea
level variation occurs later in the wave train. Moreover this
kind of waves presents an irregular shape close where they
are generated, and a more regular shape, typical of propagat-
ing dispersive waves packet, as far as they radiate offshore.

From the comparison with the laboratory experiments it
can be seen that the depth integrated MSE, modified in order
to include the wave generation, appears suitable to correctly
model the propagation of tsunamis. The water surface ele-
vations and the important properties of waves, as the time of
arrival of the crest, the wave heights and periods, are well re-
produced. This is especially true if we investigate the far field
waves (results at gauges 20S to 16S). The numerical model
is not able to reproduce exactly the wave field at the gauges
close to the generation area, 12S and 11S. Here the water
depth is around 10 mm, therefore the same order of magni-
tude of the wave amplitude. In these condition the linear ap-
proximation into the wave equation is no longer valid. From
the comparison it can be noted the discrepancy between the
measured and the computed free surface elevation, which is
mostly due to the wave nonlinearities. Adopting the source
term proposed by Tinti et al. (2006) similar consideration can
be done and a slight underestimation of the waves amplitude
is present at the far field gauges.

The same simulation results are now represented in Fig.6,
in terms of the positive and negative maximum free water
surface elevation versus the gauge position distance from the
impact point. These maximum and minimum amplitudes re-
fer to the maximum wave encountered (top panel), to the
first wave (middle panel) and to the second wave (lower
panel). The values of the numerical simulations are normal-
ized with the corresponding measurements in the physical
model. Therefore the horizontal lines at values 1 and−1 are
the experimental results taken as reference. The circles refer
to the solution of Eq. (26), while the black dots to the so-
lution of the same equation with the source term proposed
by Tinti et al. (2006). This kind of figure provides a more
quantitative evaluation of the models comparisons. It can be
noted how the two numerical solutions do not differ from
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frequency corresponds, for the considered water depth, to awave length which slightly varies around

the value of 0.4m. Therefore the numerical simulation, carried out with a finite element method,

uses triangular linear elements with maximum size of 0.04m, in order to ensure the minimum of 10

points per wave length.

In the following, Fig. 5 shows the comparison of the free water surface elevation at the 8 sea-level

gauges (see Fig. 2) as measured in the physical model (thick black lines) and as calculated by the

numerical model (thin black lines). In the same figure is presented also the results of other numerical

simulations (thin red lines) which refer to the solution of the elliptic MSE but using the source term

as the one proposed by Tinti et al. (2006). In this case the right hand side of Eq. (28) containsks

instead ofk. The panels are ordered with the distance from the impact point, i.e. where the landslide

firstly impacts the undisturbed shoreline. Note that not allthe panels have the same axes limits.
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Fig. 5. Free water surface elevation as measured in the laboratory experiments(thick black line), as computed by

the numerical model with the proposed source term (thin black line) and ascomputed with the same numerical

model but using the source term proposed by Tinti et al. (2006) (thin red line).

Looking at the water surface displacements it can be noted that the landslide generates first a

positive elevation of the mean sea level, which is even the maximum one close to the generation

area (at gauges12S, 11S and20S). While propagating offshore the first crest decreases and the

maximum sea level variation occurs later in the wave train. Moreover this kind of waves presents
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Fig. 5. Free water surface elevation as measured in the laboratory experiments (thick black line), as computed by the numerical model with
the proposed source term (thin black line) and as computed with the same numerical model but using the source term proposed by Tinti et
al. (2006) (thin red line).

an irregular shape close where they are generated, and a moreregular shape, typical of propagating

dispersive waves packet, as far as they radiate offshore.

From the comparison with the laboratory experiments it can be seen that the depth integrated

MSE, modified in order to include the wave generation, appears suitable to correctly reproduce the

propagation of tsunamis. The water surface elevations and the important proprieties of waves, as the

time of arrival of the crest, the wave heights and periods, are well reproduced. This is especially true

if we investigate the far waves field (results at gauges20S to 16S). The numerical model is not able

to reproduce exactly the wave field at the gauges close to the generation area,12S and11S. Here the

water depth is around 10mm, therefore the same order of magnitude of the wave amplitude. In these

condition the linear approximation into the wave equation is no longer valid. From the comparison it

can be noted the discrepancy between the measured and the computed free surface elevation, which

is almost due to the wave nonlinearities. Adopting the source term proposed by Tinti et al. (2006)

similar consideration can be done and a slight underestimation of the waves amplitude is present at

the far field gauges.
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Fig. 6. Positive and negative maximum free water surface elevations values for the maximum (top panel), the

first (middle panel) and the second wave (bottom panel) encountered atall the sea level gauges. The circles

refer to the values obtained with the proposed model, the dots to the one solved using the source term proposed

by Tinti et al. (2006); in both cases the values are normalized with the experimental measurements.

The same simulations results are now represented in Fig. 6, in terms of the positive and negative
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Fig. 6. Positive and negative maximum free water surface elevations values for the maximum (top panel), the first (middle panel) and the
second wave (bottom panel) encountered at all the sea level gauges. The circles refer to the values obtained with the proposed model, the
dots to the one solved using the source term proposed by Tinti et al. (2006); in both cases the values are normalized with the experimental
measurements.

www.nat-hazards-earth-syst-sci.net/10/2259/2010/ Nat. Hazards Earth Syst. Sci., 10, 2259–2268, 2010



2266 C. Cecioni and G. Bellotti: Landslide tsunamis in depth integrated model

maximum free water surface elevations versus the gauge position distances from the impact point.

These maximum and minimum amplitude refer to the maximum wave encountered (top panel), to

the first wave (middle panel) and to the second wave (lower panel). The values of the numerical

simulations are normalized with the corresponding measurements in the physical model. Therefore

the horizontal lines at values 1 and -1 are the experimental results taken as reference. The circles

refer to the solution of Eq. (28), while the black dots to the solution of the same equation with

the source term proposed by Tinti et al. (2006). This kind of figure provides a more quantitative

evaluation of the models comparisons, which regard the maximum, the first and the second waves

registered. It can be noted how the two numerical solutions do not differ from each other for the first

4 gauges, which are the closest to the generation area. Proceeding further in deeper seas it can be

noted an overall small overestimation of the wave amplitudes with the proposed source term, while

on contrary the source term proposed by Tinti et al. (2006) appears to slightly underestimate these

values. For the present case it can be noted the almost perfect agreement between the numerical and

the laboratory results, as concerns the maximum free water surface displacement measured in the

wave train.
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Fig. 7. Positive and negative maximum free water surface elevations obtained from the proposed numerical

model for the four landslide kinematics. The different markers referto the different initial position of the

landslide above the undisturbed shoreline:ζ = 0.30m (circle),ζ = 0.40m (point),ζ = 0.50m (plus sign) and

ζ = 0.60m (diamond). All these values are normalized with the appropriate experimental measurements.
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Fig. 7. Positive and negative maximum free water surface elevations obtained from the proposed numerical model for the four landslide
kinematics. The different markers refer to the different initial position of the landslide above the undisturbed shoreline:ζ = 0.30 m (circle),
ζ = 0.40 m (point),ζ = 0.50 m (plus sign) andζ = 0.60 m (diamond). All these values are normalized with the appropriate experimental
measurements.

each other for the first 4 gauges, which are the closest to the
generation area. Proceeding further in deeper areas it can be
noted small overestimation of the wave amplitude with the
proposed source term, while on the contrary the source term
proposed by Tinti et al. (2006) appears to slightly underes-
timate these values. For the present case it can be noted the
almost perfect agreement between the numerical and the la-
boratory results of the maximum free water surface displace-
ment measured in the wave train.

Figure7 is similar to Fig.6, but shows the results of nu-
merical computations for different landslide kinematics. As
already stated the laboratory experiments were carried out
varying the initial landslide position, therefore it changes the
landslide velocity because it slides due to gravity accelera-
tion. In this figure the different markers refer to the different
initial position of the landslide above the undisturbed shore-
line: ζ = 0.30 m (circle), ζ = 0.40 m (point), ζ = 0.50 m
(plus sign) andζ = 0.60 m (diamond). All the numerical re-
sults shown are normalized with the corresponding experi-
mental results. As in the previous figure, the values for the
maximum, the first and the second wave encountered, are
reported respectively at the top, middle and bottom panel.
From this figure it is possible to evaluate that not a relevant
difference exist by varying the landslide kinematics. It can
be noted that the numerical model produces a higher over-
estimation when the landslide starts to move from a higher

position (diamond markers). This trend can be explained by
remembering that the numerical model reproduces just the
waves generated by submarine bottom movements.

In order to further highlight the importance of reproduc-
ing the wave frequency dispersion, the same model is ap-
plied using the shallow water approximation, i.e. modifying
the MSE so thatc = cg =

√
gh. The resulting equation is the

forced linear long wave equation, Eq. (25). Since the numer-
ical technique previously described is applied, the field equa-
tion is solved in the frequency domain, therefore the Fourier
transform of Eq. (25) is used. Figure8 presents the com-
parison of the water surface elevations, at the same gauges
position, between the physical model (thick line) and the nu-
merical model (thin line). The comparison shows relevant
differences in the wave modeling. The forced long wave
equation let all the wave frequency components travel at the
same velocity, resulting in a single crest-trough wave which
propagates withcg =

√
gh. Moreover the energy content of

waves propagating offshore is underestimated, even if the
source term in the shallow water equation is the same of the
one applied to the MSE. This is due to the fact that shoaling
effects reproduced by the long wave equations, when mo-
deling waves from shallow to deep waters, underestimate the
wave energy, since the group celerity in deep water is over-
estimated if assumed equal to

√
gh.
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Fig. 7 is similar to Fig. 6, but shows the results of numericalcomputations for different landslide

kinematics. As already said the laboratory experiments were carried out varying the initial landslide

position, therefore it changes the landslide velocity because it slide due to gravity acceleration. In

this figure the different markers refer to the different initial position of the landslide above the undis-

turbed shoreline:ζ = 0.30m (circle), ζ = 0.40m (point), ζ = 0.50m (plus sign) andζ = 0.60m

(diamond). All the numerical results shown are normalized with the corresponding experimental re-

sults. As for the previous figure values for the maximum (top panel), the first (middle panel) and the

second wave (bottom panel) encountered at all the sea level gauges. From this figure it is possible

to evaluate that not a relevant difference exist by varying the landslide kinematics. It can be noted

that the numerical model produces a higher overestimation when the landslide starts to move from a

higher position (diamond markers). This trend can be explained by remembering that the numerical

model reproduces just the waves generated by submarine bottom movements.
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Fig. 8. Free water surface elevation as measured in the laboratory experiments(thick line) and as computed

with the same numerical model but in the shallow water approximation (thin line)

In order to further highlight the importance of reproducingthe wave frequency dispersion, the

same model is applied using the shallow water approximation, i.e. modifying the MSE so that

c = cg =
√
gh. The resulting equation is the forced long wave equation, Eq. (27). Since the

numerical technique previously described is applied, the field equation is solved in the frequency

14

Fig. 8. Free water surface elevation as measured in the laboratory experiments (thick line) and as computed with the same numerical model
but in the shallow water approximation (thin line).

Table 2. Values of the maximum wave height and of the first wave height as measured in the physical model and as computed in the presented
numerical simulations.

Hmax (mm) H1 (mm)

Gauge r (m) Exp. MSE MSETinti SWE Exp. MSE MSETinti SWE

12S 0.63 39.8 22.1 20.3 20.1 39.8 22.1 20.1 20.1
11S 0.76 19.4 20.2 19.2 18.7 19.4 20.2 19.2 18.7
20S 0.92 23.9 21.6 19.2 17.4 23.9 21.6 19.2 17.4
7S 1.82 19.0 19.2 19.1 12.4 14.5 16.3 9.7 12.4

15S 2.37 19.1 18.9 13.7 11.3 14.5 17.3 7.2 11.3
24S 4.55 8.9 9.2 6.6 7.2 4.1 4.8 2.2 7.2
22S 4.79 8.5 8.6 6.7 6.7 3.4 4.1 2.0 6.7
16S 4.91 7.9 7.9 6.7 6.2 3.2 3.6 1.8 6.2

All these considerations are now collected in a different
form, by means of a table. Table2 presents a quantitative
comparison of the wave height of both the maximum and the
first wave recorded. In the table are reported the wave height
as measured in the laboratory experiments, as obtained solv-
ing the present model Eq. (26), as obtained solving again the
MSE but with the forcing term as that proposed by Tinti et
al. (2006), as computed solving the numerical model in the
long waves approximation. Just the values of the maximum
wave and the first one encountered are reported because they
are considered the most important height parameters of the
tsunami wave train. The maximum one because is the more
destructive, the first one because, if well estimated, can serve
as a warning alert.

5 Conclusions

The paper has presented a possible extension of the far field
propagation model by Bellotti et al. (2008) to include the
tsunami generation phase. As far as the model is based on the
linear MSE, a correct reproduction of waves generation and
propagation together, occurs just in deep water conditions
and for small sea bottom vertical variation. In the present
paper is derived the modified MSE, which includes a source
term achieved by assuming the time variation of the water
depth function, induced by a submarine earthquake or land-
slide. This source term is function of the generated wave
frequency, therefore its inclusion appears natural when solv-
ing the wave equation in the frequency domain. However the
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same source term can be applied to numerical models which
work in the time domain. In these cases is required a previ-
ous filtering of the source term in the frequency domain, and
then anti-transformation in the time domain.

The inclusion of the wave source term has been already
proposed and validated in the paper by Cecioni and Bel-
lotti (2010). Here for the first time is shown a model vali-
dation by comparison with a 3-D laboratory experiment. The
physical model reproduces landslide tsunamis generated at
the flank of a small conical island, and the experiments have
been carried out in order to approximately reproduce a pos-
sible tsunami scenario on the volcanic island of Stromboli.
The flanks of this island are very steep, therefore when the
landslide enters into the sea, it generates waves which are im-
mediately in deep water conditions. The Stromboli tsunami
scenario, and therefore the laboratory experiments (Di Risio
et al., 2009), appear a study case which satisfy the limits of
applicability of the proposed model.
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