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Abstract. This study focuses on landslide susceptibility
mapping in the Daunia area (Apulian Apennines, Italy) and
achieves this by using a multivariate statistical method and
data processing in a Geographical Information System (GIS).
The Logistic Regression (hereafter LR) method was chosen
to produce a susceptibility map over an area of 130 000 ha
where small settlements are historically threatened by land-
slide phenomena. By means of LR analysis, the tendency to
landslide occurrences was, therefore, assessed by relating a
landslide inventory (dependent variable) to a series of causal
factors (independent variables) which were managed in the
GIS, while the statistical analyses were performed by means
of the SPSS (Statistical Package for the Social Sciences) soft-
ware. The LR analysis produced a reliable susceptibility map
of the investigated area and the probability level of landslide
occurrence was ranked in four classes. The overall perfor-
mance achieved by the LR analysis was assessed by local
comparison between the expected susceptibility and an in-
dependent dataset extrapolated from the landslide inventory.
Of the samples classified as susceptible to landslide occur-
rences, 85% correspond to areas where landslide phenom-
ena have actually occurred. In addition, the consideration of
the regression coefficients provided by the analysis demon-
strated that a major role is played by the “land cover” and
“lithology” causal factors in determining the occurrence and
distribution of landslide phenomena in the Apulian Apen-
nines.

1 Introduction

This study applied the multivariate statistical Logistic Re-
gression (LR) method to achieve landslide susceptibility
mapping in the Daunia Mts. sector, the Apulian portion of
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the Italian Apennines chain. This area is historically threat-
ened by slope failure phenomena (Cotecchia, 1963; Iovine et
al., 1996; Zezza et al., 1994) but a comprehensive investiga-
tion of the proneness to landslide phenomena of the Daunia
Mts. territory has not previously been performed.

The study area covers 130 000 ha and includes 25 small
municipalities belonging to the administrative district of Fog-
gia (Fig. 1). It is characterised by hilly terrains, that reach a
maximum altitude of 1143 m a.s.l., and small urban areas that
are sometimes located on steep slopes.

The geological setting of the Daunia region originated
from the evolution of the Apennine chain, a Neogene and
Quaternary thrust belt within the central Mediterranean oro-
genic system. Being a part of the whole chain, the South-
ern Apennines are made of a stack of Meso-Cenozoic tec-
tonic units covered by marine turbiditic sedimentary de-
posits of the Quaternary period. The deposits consist of
limestone and/or sandstone layers interbedded with clay-like
marls, clays and silty-clays. Effects due to more recent tec-
tonic events have since modified the original sedimentary
set-up and the sedimentary successions have been found to
be affected by different fissuring intensities (Cotecchia et al.,
2009).

Recent results of laboratory tests, described in Vitone et
al. (2008), have demonstrated that the state boundary surface
of the fissured clays is even smaller than that of the same
material when intact and, as reported by these authors, fis-
sured clays play a fundamental role in the development of
the slope failure processes in the Daunia region. As recently
reported by Cotecchia et al. (2010) after extensive geomor-
phological field surveys across the Daunia region, three main
landslide typologies can be recognized and included in the
landslide inventory: intermediate to deep-seated compound
landslides with a failure surface depth of 30 m or more, mud-
slides with a shallow to intermediate depth sliding surface
and deep-seated to intermediate depth rotational landslides
with a sliding surface depth of less than 30 m. Depicting
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 1 

Figure 1. Location map showing the administrative boundaries of the 25 small municipalities 2 

threatened by slope failure (Daunia Mts, Italian Apennines, Apulian sector). 3 

Fig. 1. Location map showing the administrative boundaries of the 25 small municipalities threatened by slope failure (Daunia Mts., Italian
Apennines, Apulian sector).

the location and distribution of landslides in a single map
is a difficult task due to the geographical extension of the
area and the large number of recorded landslides, but some
photographs of a few significant phenomena that occurred at
Volturino (FG) are shown in Fig. 2.

Among the variety of existing statistical techniques for
data processing of geographical information, the LR was
chosen to produce a susceptibility map over the area. By
LR, a best fit between the presence or absence of a land-
slide (dependent variable) and a set of possible causal fac-
tors (independent variables) is established on the basis of a
maximum likelihood criterion, and yields an estimation of
regression coefficients that are representative of the relation-
ship between the factors and the phenomena. The reliability
of such an analysis is, therefore, related to its ability to iden-
tify the proneness to landslide occurrences and to establish a
ranking of landslide susceptibility.

The basic properties of LR analysis will be introduced in
the next section, but it must be borne in mind that a range
of alternative methods for preparing landslide susceptibility
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Figure 2. Damages and failures at Volturino (FG) where housing areas and infrastructures are 2 

continuously threatened by landslides. 3 

 4 

Fig. 2. Damages and failures at Volturino (FG) where housing areas
and infrastructures are continuously threatened by landslides.
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map is currently available in the literature. In Ayalew et
al. (2005a) an interesting summary of the most commonly
used methods for landslide susceptibility analysis can be
found, together with a complete reference list. Relevant stud-
ies have also been proposed by Lee and Sambath (2006), who
compared the use of frequency ratio and LR models, Lee et
al. (2007), who added studies related to the use of artificial
neural networks and Akgun et al. (2008), where the likeli-
hood of frequency ratio and a weighted linear combination
model are compared. Recently, Ayalew et al. (2005b) intro-
duced the use of a couple of methods for landslide suscep-
tibility mapping: the first using bivariate statistical analysis
to classify quantitative variables and the second, based on
the Analytic Hierarchy Process (AHP), to assign weights to
the attributes. More recently, interesting papers proposed by
the B. Pradhan and co-authors research group, based on back
propagation ANN and fuzzy algorithms, are worthy of note
as the latest results in this discipline (Pradhan et al., 2009;
Pradhan and Lee, 2010a, b).

Some of the causal factors adopted are derived from a
DEM (Digital Elevation Model), which must meet minimum
requirements in terms of spatial resolution and vertical ac-
curacy with respect to the scale of investigation and the ex-
pected reliability of other, DEM-derived variables. Causal
factors based on elevation data are very often cited as “mor-
phometric variables” and, among these, the following will
be adopted in the present study: altitude, slope angle, slope
exposure, planform curvature and profile curvature. How-
ever, the most promising techniques in assessing the prone-
ness to slope failure (hereafter called susceptibility) at a re-
gional scale rely on statistical methods that require, in addi-
tion, large amounts of non-morphometric information to de-
scribe variables in the geographical and geological domains.
Drainage capacity, lithology, land coverage and the presence
of water sources or roads could constitute a possible set of
non-morphometric causal factors. Nevertheless, an inventory
of existing landslides has to be created, within the investi-
gated area, in order to determine the relationship between the
presence/absence of landslides and the geographical dataset
representing possible causal factors. To identify such rela-
tionships, the Logistic Regression approach is particularly
suitable when the variables involved do not follow random
distributions and factors are not necessarily related to the
phenomenon by a linear function (Menard, 2001). A calcula-
tion of the factors and management of the landslide inventory
requires the use of a GIS working environment and, there-
fore, the creation of an appropriate geodatabase where vector
and raster data are properly defined. As already pointed out,
the capacity to perform the data analysis discussed in this
paper is not a common tool within the most widely avail-
able GIS packages and a reliable statistical software package
(SPSS in this work) is, therefore, required.

The management within the GIS environment of variables
representing potential causal factors and the final suscepti-
bility map provided by the Logistic Regression analysis are

examined in this paper, paying particular attention to the de-
scription of the causal factors analysed, the overall perfor-
mance achieved by the analysis, as verified using validation
procedures, and a discussion of the relevant causal factors
that emerged from the analysis.

2 The multivariate approach: Logistic Regression (LR)

Among the wide range of statistical methods proposed in
the assessment of landslide susceptibility, LR analysis has
proven to be one of the most reliable approaches (Ayalew and
Yamagishi, 2005; Chau and Chan, 2005; Chen and Wang,
2007; Dai and Lee, 2002; Dai et al., 2002; Guzzetti et
al., 2006; Lee and Sambath, 2006; Lee and Pradhan, 2007;
Ohlmacher and Davis, 2003). Basically, LR analysis relates
the probability of landslide occurrence (having values from
0 to 1) to the “logit”Z (where−∞ < Z <0 for higher odds
of non-occurrence and 0< Z < ∞ for higher odds of occur-
rence). In the LR formulae, the probability of landslide oc-
currence is expressed by

Pr=
ez

1+ez
=

1

1+e−z
(1)

The logit Z is assumed to contain the independent vari-
ables on which landslide occurrence may depend. The LR
analysis assumes the termZ to be a combination of the inde-
pendent set of geographical variablesXi (i = 1,2,...,n) act-
ing as potential causal factors of landslide phenomena. The
termZ is expressed by the linear form

Z = β0+β1X1+β2X2+ ...+βnXn (2)

where coefficientsβi(i = 1,2,...,n) are representative of the
contribution of single independent variablesXi to the logit
Z andβ0 is the intercept of the regression function. It must
be noted that the LR approach does not require, or assume,
linear dependencies between Pr (dependent term) and the
variables involved (independent set of variables representing
causal factors). An exponential function is involved. Co-
efficientsβ are estimated through the maximum likelihood
criterion and correspond to the estimation of the more likely
unknown factors. Although the processing of the geographi-
cal data used in this study was performed in the GIS environ-
ment, the LR analysis was carried out by the SPSS statistical
package. GIS scientists often need to fall back on a powerful,
reliable environment for statistical data analysis, because the
tools implemented in the main GIS packages rarely include
statistical methods with related statistical analysis of the out-
comes (O’Sullivan and Unwin, 2003). The LR method is
particularly well suited to the analysis of categorical vari-
ables and, when working with geographical data, requires
sampling of the dataset using a regularly spaced grid. The LR
analysis was anticipated by transforming some of the contin-
uous variables representing possible causal factors into cat-
egorical formats: the transformation of continuous variables
into categorical or ordinal data is not strictly required but the
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following needs drove our choice. The first was the require-
ment to establish a linear relationship between causal factors
and the logit. This is often done by assigning variables to
quartiles or adopting a particular condition such as the equal
area, but we did not approach the task in this way.

The second need was to maximize the ability to inter-
pret the dependencies existing among causal factors and the
occurrence of landslides, which could be improved by the
transformation of continuous variables using a proper coding
scheme (Dai and Lee, 2002). In addition, to avoid the so-
called multicollinearity effect, whenm categorial variables
arise from a continuous dataset, onlym−1 are included in
the analysis (Ayalew and Yamagishi, 2005).

In this study, the Optimal Binning methodology, available
among classification modes in the SPSS packages was used
(Fayyad, 1993). So, the categorization of continuous vari-
ables (slope angle, altitude, distance to drainage and distance
to road) was based on the distribution of the dichotomous
dependent variable (presence/absence of landslides) under
the criterion of maximizing differences among the classes
formed. After such a classification, possible relationships be-
tween classes of independent variables and the phenomenon
under study are more easily detectable.

It must also be noted that the independent variables are
not necessarily normally distributed, nor are they required
to have equal statistical variances. Moreover, in order for the
causal factors to be eligible for a LR analysis, they have to be
referred to a common space and the rasterization procedure
must be done, regardless of whether the variables were origi-
nally in a raster (with a different spatial resolution) or vector
format. More details on the theory and concept of LR can be
found in Hosmer and Lemeshow (2000) and Menard (2001).

3 Causal factors used in the LR analysis

To assess the potential of the analysis of susceptibility to
landslides obtained from geographical information, the fac-
tors involved need to be identified and validated (Aleotti and
Chowdhury, 1999; Ercanoglu and Gokceoglu, 2004). Hence,
in addition to making a landslides inventory in the investi-
gated area, the following ten causal factors were selected:
altitude, slope angle, slope exposure, planform curvature,
profile curvature, lithology, land cover, drainage basin, dis-
tance from roads and distance from rivers. All these data,
that will be examined in the following sections, were ini-
tially available in vector or raster formats and their process-
ing and manipulation was entirely managed in the GIS envi-
ronment (Akgun et al., 2008; Ayalew and Yamagishi, 2005;
Dai and Lee, 2002; Lee and Min, 2001; Lee and Pradhan,
2007; Nandi and Shakoor, 2009; Santacana et al., 2003; Vi-
jith and Madhu, 2008; Yesilnacara and Topalb, 2005). The
selection of variables with a major role in landslides suscep-
tibility analysis can be a very difficult task. Factors must not
be redundant or arising from a combination of others (Ay-
alew et al., 2005; Yalcin, 2008). Moreover, the whole dataset

must be available all over the study area and single variables
defined at a comparable spatial accuracy (usually quantified
by the scale of maps containing data). A poorly defined vari-
able will constitute a limiting factor in the description of the
final susceptibility classes. Prior to discussing the factors we
used, a few considerations need to be made. Firstly, despite
the fact that the final susceptibility analysis has to be car-
ried out with data in raster format, an ontology of the vector
data, defining further properties related to causal factors, is
also essential. Attributes connected with vector data are use-
ful for defining categorical variables, and the development of
a relational geodatabase could help to carry out automated
processing of the large amount of data needed. Secondly, it
must be considered that five of the selected factors are de-
rived from a DEM that is required to be more accurate than
the scale of investigation adopted. In this paper the DEM,
provided by the cartographic facility of the Apulian Region,
was derived from the photogrammetric processing of aerial
images. It generated a regularly spaced (40×40 m) elevation
model without requiring the interpolation of data or vectori-
zation of contour lines from existing maps. The more accu-
rate the DEM, the more reliable the factors extracted from
the topography. The following “morphometric causal fac-
tors” will be introduced in advance: altitude, slope angle,
slope exposure, planform curvature, profile curvature.

3.1 Morphometric causal factors

The aforementioned DEM, available in grid format (∗.asc
files), was generated in the year 2005 with the aim of produc-
ing a series of 1:10 000 scale orthophotos (Project IT2000NR
by the Compagnia Generale di Ripreseaeree S.p.A., Parma,
Italy). The grid exhibits a regular post-spacing of 40 m
(with a horizontal error smaller than 2 m) and a vertical
accuracy better than 5 m. The study area is represented
by 2 856 411 pixels with altitudes ranging between 47 and
1143 m a.s.l. Moreover, the dependency between the DEM
accuracy and the reliability of the derived morphometric fac-
tors must be stressed. They will exhibit an accuracy level
depending on the vertical accuracy featured by the elevation
data. In addition, finer pixel spacing does not necessarily
correspond to an improvement in the accuracy of the derived
factors. A seemingly coarser DEM, but more representative
of the slope properties, might better define factors involved
in the slope failure mechanism. For instance, when the slope
angle is being calculated, an increase in spatial resolution
could take into account some morphological properties at a
very fine scale that do not, in fact, relate to the investigated
phenomena. Moreover, the subsequent statistical analysis fo-
cusing, in particular, on the correlation between factors and
landslide occurrences could potentially be impaired.

In early work on quantifying the morphometric factors the
formulae proposed by Zevenbergen and Thorne (1987) were
used. In such computations, a 3 by 3 moving grid elevation
sub-matrix is used and maps reporting causal factors can
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easily be generated once the basic parameters described in
Eqs. (3) have been derived for cells according to the scheme
in Fig. 3.

A =

[(
Z1+Z3+Z7+Z9

4

)
−

(
Z2+Z4+Z8+Z6

2

)
+Z5

]
L4

B =

[(
Z1+Z3−Z7−Z9

4

)
−

(
Z2−Z8

2

)
+Z5

]
L3

C =

[(
−Z1+Z3−Z7−Z9

4

)
−

(
Z4−Z6

2

)
+Z5

]
L3

(3)

D =

[(
−Z4+Z6

2

)
−Z5

]
L2

E =

[(
Z2+Z8

2

)
−Z5

]
L2

F =

[(
−Z1+Z3+Z7−Z9

2

)]
4L2

G =
[−Z4+Z6]

2L

H =
[Z2+Z8]

2L
I = Z5

The 3×3 pixels kernel was selected for the DEM pixel size,
since we considered a distance of 120 m sufficient to repre-
sent the factors under study.

3.1.1 Altitude

The classification of the local reliefs needed in the statistical
analysis was performed starting from the DEM, that contains
elevation data related to each of the 40×40 m cells. Figure 4a
shows the elevation dataset, also representing the prevailing
morphology of the area. The whole territory is symbolized
by around 3 billion points and altitudes ranging between 47
and 1143 m a.s.l.

3.1.2 Slope angle

Slope angle gradient is one the most important causes of
slope instability (Ayalew and Yamagishi, 2005; Guzzetti et
al., 1999; Kolat et al., 2006; Ohlmacher and Davis, 2003;
Oyagi, 1984; S̈uzen and Doyuran, 2004; Zêzere et al., 1999).
The moisture content and pore pressure could be influenced
at local scales, whereas the regional hydraulic behaviour
could be controlled by slope angle patterns at larger scales.
In accordance with the DEM post-spacing, the slope angle
gradient is available over a regular 40×40 m grid. The slope
angle gradient is referred to cells and is calculated as the av-
erage value (measured in sessagesimal degrees with respect
to the proximal 8 cells) following the formula proposed by
Zevenbergen and Thorne (1987)

Slope= arctan

[√(
G2+H 2

)]
(4)

In Fig. 4b a slope angle factor up to 51 degrees is shown.

 1 

Figure 3. 3 x 3 elevation sub-matrix used to assess morphometric factors. 2 Fig. 3. 3×3 elevation sub-matrix used to assess morphometric fac-
tors.

3.1.3 Slope exposure

Landslide distribution could potentially be affected by fac-
tors related to the exposure of slopes with respect to the car-
dinal directions. Slope exposure reveals possible influences
of dominant winds, different weather conditions or effects
related to the incident solar radiation. In particular, the latter
effect on landslide occurrences has been suggested by Mossa
et al. (2005) in the north-western part of the investigated area.
As shown in Fig. 4c, slope exposure has been divided into
9 classes (E, SE, S, SW, W, NW, N, NE and flat areas).

3.1.4 Planform and profile curvatures

Curvatures analysis allows areas to be identified on a surface
where convexities or concavities are more or less localized
and, consequently, could help to identify zones that exhibit
proneness to landsliding when such occurrences are related
to these superficial features. Even if several algorithms for
curvature analysis are available in GIS packages, the out-
comes do not vary significantly when the elevation data are
evenly spaced, as in the photogrammetric DEMs. For the
sake of brevity and coherence with the causal factors dis-
cussed above, only the results of the application of the Zeven-
bergen and Thorne algorithm (1987) will be introduced. A
concave (negative values) planform curvature could corre-
spond to a convergence of the drainage lines and retaining
of the water, whereas a planform curvature showing a con-
vexity (positive values) could correspond to diverging flow
lines (Lee and Min, 2001; Oh et al., 2009). Obviously, the
local morphologies are more exhaustively drawn by the def-
inition of a profile (longitudinal) curvature showing whether
the slope is concave or convex. All these features are nor-
mally related to some particular landslide kinematics or other
slope instability phenomena, and influence the local drainage
system.

In Fig. 4d and e the planform and profile curvatures, re-
spectively, are reported.
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 1 

Figure 4. Maps showing the morphometric factors introduced in section 3.1: a) altitude; b) 2 

slope angle; c) slope exposure; d) planform curvatures and e) profile curvatures. 3 

Fig. 4. Maps showing the morphometric factors introduced in Sect. 3.1:(a) altitude; (b) slope angle;(c) slope exposure;(d) planform
curvatures, and(e)profile curvatures.
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3.2 Non-morphometric causal factors

Factors which are related to superficial features are grouped
under the non-morphometric category even though at some
stage of their computation a detailed knowledge of the mor-
phology is required. Instead, the computation of some of the
non-morphometric causal factors do not require any informa-
tion on surface topography. This is the case of causal factors
such as lithology and land cover, which are usually provided
by means of vector maps at appropriate scales. In LR analy-
sis their processing requires a rasterization procedure where
attributes connected with geometric features have to be prop-
erly managed in order to divide factors into separate classes.
For instance, each pixel will be representative of a specific
lithology or land cover class.

3.2.1 Drainage basin

Advanced tools available in GIS packages allow a new layer
to be computed, with cell values expressing the cumulative
flow that has passed through each cell during the drain pro-
cess. The area drained by each pixel is, therefore, evaluated
by means of a hierarchical dependency that is accomplished
starting from the DEM. An average run-off rate is defined
by the user and the same value is uniformly applied over the
entire area. The algorithm assumes the run-off to be drained
as overland flow and phenomena such as infiltration, perco-
lation and evapotranspiration will not be taken into account
in this layer. All these parameters could be implemented in
the algorithm adopted, but a wide knowledge of these over
the studied area is still far from complete at an eligible spa-
tial accuracy. Results provided by the analysis are shown in
Fig. 5a, where the draining capabilities are expressed as the
numbers of cells drained by the reference pixel. Thanks to
the introduction of this layer in the statistical analysis, a pos-
sible relationship between the superficial run-off processes
and the proneness to landslide is investigated. In addition,
such an analysis is able to simulate the geographical run-off
pattern under severe rainfall conditions, as well as showing
the actual flows (Tarboton, 1997).

3.2.2 Lithology

Information on the lithology was derived from a series of
1:100 000 maps produced by the Servizio Geologico d’Italia
(Italian Geological Agency) over the period from 1967 to
1975 (Cestari et al., 1975; Jacobacci et al., 1967; Jacobacci
and Martelli, 1967; Malatesta et al., 1967). Maps were suc-
cessively vectorized and lithologies assigned to geographical
areas as attributes connected with vector polygons. In the
statistical analysis, the original 36 classes of lithology were
grouped into 11 new sub-classes on the basis of similarities
in the lithological and geo-mechanical properties. The map
reporting the lithology classes is shown in Fig. 5b.

3.2.3 Land cover

Land cover was derived from the classification of Land-
sat 7 (sensor ETM+) satellite data provided within the Corine
Land Cover project (launched by the European Union Com-
mission), after the validation by field survey. The spatial ac-
curacy of these data could be related to a 1:50 000 map scale
and, in order to reduce the number of variables involved in
the analysis of this causal factor, the original classes of land
cover were grouped into 9 classes on the basis of presumed
similarities. Figure 5c reports the mapping of units in the
Daunia Mts. area.

3.2.4 Distance from roads

A road segment may constitute a barrier or a corridor for wa-
ter flow, a break in slope gradient or, in any case, may induce
instability and slope failure mechanisms. The whole road
network, composed of secondary roads was, therefore, in-
cluded as a possible triggering factor and source of landslide
susceptibility. The distance from the roads is computed as the
minimum distance between each of the cells and the nearest
road represented in vector format. This factor does not take
into account the type of road (width, traffic intensity, rank,
etc.). See Fig. 5d for a representation of this factor.

3.2.5 Distance from rivers

Previous studies carried out on a reduced portion of the Dau-
nia Apennines by Mossa et al. (2005) highlighted a close
spatial relation between the occurrence of landslides and the
presence of watercourses or dense drainage lines. The “prox-
imity to rivers” factor would potentially include an activating
mechanism related to erosion along the slope foot. Unfortu-
nately, ephemeral watercourses are not very easily express-
ible in symbolic form in the vector data representing a river
network, and it is very difficult to model the theory of wa-
tercourses as triggers of landslide occurrences by data in a
GIS. For this reason the causal factor discussed here must be
interpreted as a search for a relationship between landslides
and stable or permanent watercourses and rivers. As for the
previous causal factor, the distances from rivers are evalu-
ated by computing the minimum distance between cells and
the nearest watercourse. See Fig. 5e for a representation of
this factor.

3.3 Landslide inventory

The landslide inventory has been created and managed within
the GIS in the framework of a wider scientific research pro-
gram carried out by several research units operating at the
Technical University of Bari (Italy) and Italian National Re-
search Council (CNR-IRPI, Bari, Italy), aiming to carry out
landslide risk assessment in the Apulian Apennines chain ar-
eas. The whole landslide inventory is based on vector data,
where landslide bodies are represented by closed polygons
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 1 

Figure 5. Maps showing non-morphometric factors above discussed: a) drained basin; b) 2 

lithology; c) land cover; d) distance from roads and e) distance from rivers. 3 

Fig. 5. Maps showing non-morphometric factors above discussed:(a) drained basin;(b) lithology; (c) land cover;(d) distance from roads,
and(e)distance from rivers.
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 1 

Figure 6. Representation of the vector landslide inventory of an area enclosing the 2 

municipality of Bovino (FG). Buildings located within the mapped landslide are highlighted 3 

by means of a spatial query in G.I.S. and coloured in red. 4 
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by means of a spatial query in G.I.S. and coloured in red. 4 

Fig. 6. Representation of the vector landslide inventory of an area enclosing the municipality of Bovino (FG). Buildings located within the
mapped landslide are highlighted by means of a spatial query in GIS and coloured in red.

with attributes related to some of the fundamental parame-
ters used in the description of the landslide body and possible
landslide mechanisms. See Fig. 6 for a layout of the inven-
tory with elevation data and aerial images superimposed.

Identification of the landslide locations and delimitations
was carried out by fieldwork, supported by analysis of the
aerial images and historical data. The geo-database collects
information related to 249 landslide bodies, in the surround-
ings of the 25 municipalities, as geometrical and alphanumer-
ical features. The geometrical and positioning accuracy of
polygons representing landslides was validated by overlay-
ing them on a recently released numerical map (scale 1:5000)
covering the Daunia Apennines.

4 Data analysis by Logistic Regression

In this application the management and processing of data
related to individual factors were carried out in the GIS en-
vironment (Geomedia Pro, Intergraph), while the statistical
analysis by LR was performed using the SPSS (Statistical
Package for Social Sciences) after exporting data to suitable
exchange formats. In the first step, the 10 selected causal
factors were classified in 68 classes that constitute the coded
independent variables dataset. Coded variables were then
exported to ASCII format and imported into the statistical
package to proceed with the LR analysis and assess theβ

regression coefficients.

The dependent variables were derived from the landslide
inventory after rasterizing polygons and then coding the cells
falling in the landslide areas. In the multiple LR analysis
cells could inherit attributes providing information on the
presence or absence of phenomena within the 40×40 m sub-
area. After recombining the coefficients, as seen in Eq. (2),
the proneness to landslide was finally computed throughout
the Daunia Apennines and a susceptibility map produced.
The overall dataset consisted of 799 906 cells with a subsam-
ple of 15 895 (corresponding to 2543 ha) representing cells
where the occurrence of landslides was proven by field sur-
vey. However, in order to form a homogeneous cells dataset
with the presence/absence of landslides, an equal number
of cells free from slope failures phenomena was randomly
extracted from the whole dataset and used in the “train-
ing” phase of the LR analysis. Thus, coefficients are deter-
mined by the maximum likelihood criterion on a sample of
31 790 cells.

5 Validation

The overall performance of the analysis is generally judged
on the number of correctly classified cells, and so a validation
process is required. In this paper, the validation procedure
was based on a comparison between the results provided by
the LR and an external dataset (not used in the training stage)
extrapolated from the initial dataset by a random process.
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Table 1. Confusion matrix with validation sample constituted by
the 25% of the overall sample (0: absence of phenomenon; 1: pres-
ence of phenomenon, cut-off value: 0.5).

PREDICTED Correctly
classified

(%)
0 1

OBSERVED
0 3135 809 79.5
1 421 3523 89.3

Overall (%) 84.4

Table 2. Confusion matrix with validation sample constituted by
the 50% of the overall sample (0: absence of phenomenon; 1: pres-
ence of phenomenon, cut-off value: 0.5).

PREDICTED Correctly
classified

(%)
0 1

OBSERVED
0 6300 1700 78.8
1 861 7116 89.2

Overall (%) 84.0

In particular, the susceptibility analysis by LR was per-
formed twice, starting with 75% and 50% of the overall sam-
ple. The validation procedure, based on comparison with the
25% and 50% quotas, not used, provided the confusion ma-
trices reported in Tables 1 and 2. The Tables reveal a sub-
stantial stability of the overall performance, in both tests up
to 84%, as well as no change in the regression coefficients.

The ROC (Relative Operating Characteristic) is an alterna-
tive approach to the assessment classification of the predic-
tive rule. In the ROC analysis, the susceptibility map is com-
pared with a dataset reporting the presence/absence of occur-
rences in the same area. Values close to 1 indicate a very
good fit (perfect classification) whereas a random fit of the
model produces values of the Area Under the Curve (AUC)
close to 0.5 in the ROC space. In this study, when starting
with 75% of the overall sample a value of 0.923 was achieved
in the AUC value (0.919 with 50% of the overall sample) and,
consequently, the balance between the number of correctly
classified pixels (true positives) and of incorrectly identified
pixels (false positives) could be considered very satisfactory
(see Fig. 7).

6 Results

As discussed above, the relative importance of indepen-
dent variables can be expressed by the regression coefficient,
highlighting the causal factors and variables that are most
strongly related to the occurrence of landslides (see Table 3
for a sub-set of the coefficients yielded by the LR analysis).

 1 

Figure 7. ROC curves representing the prediction capability achieved by the Logistic 2 

Regression and Frequency Ratio analyses. 3 

Fig. 7. ROC curves representing the prediction capability achieved
by the Logistic Regression and Frequency Ratio analyses.

Land cover, lithology and exposure appear to be more
strongly related to slope failure occurrences than other fac-
tors. In particular, classes such as “permanent meadows” and
“sparsely vegetated areas” show negative regression coeffi-
cients and, therefore, act as protection against landslide oc-
currences. On the other hand, a negative coefficient could
be obtained if such classes are not present, or are assigned
little weight in the training sample. Among the remaining
classes, “urban and/or industrial fabric” and “arable land”
exhibit positive, high regression coefficients and have to be
considered as triggering factors.

Such a dependency could be related to the strong presence
of urban fabric and arable land in the training areas, since the
project was mainly focused on assessment of the landslide
hazard in human settlement zones. Nevertheless, it should
be stressed that, as pointed out by Akgun et al. (2008), both
urbanized and cultivated areas result from heavier modifica-
tions of the original landscape, and the instability phenomena
could be triggered by such modifications. In addition, the
two classes are inclined to be geographically linked because
of their presence where the morphological pattern allows an-
thropogenic alterations to be made. This trend is confirmed
by the analysis of the “exposure” factor, which presents a
positive coefficient only in sub-flat cells.

Coefficients related to the classes of lithology identify the
“clays, marls and silty clays” as particularly prone to land-
slide occurrences, while “terraced alluvial and fluvial de-
posits” and “pebbles” exhibit negative coefficients.

The slope angle and altitude factors show a very well-
defined coefficients trend. The former emphasizes a direct
proportionality between the increase of the slope angle and
the coefficients, larger coefficients being detected for an-
gles steeper than 11 degrees, while the latter exhibit greater
coefficients as the values approach 540 m a.s.l., whereas for
higher classes the degree of proportionality is reversed.
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Table 3. Results provided by the LR analysis. Coefficients are related to each of the classes created for single causal factors.

Causal factors Classes # of cells % of cells Total # of % of cells Frequency β

subjected to subjected to cells of of class ratio
landslide landslide a certain a certain (a/b)

within within class class
the class the class (b)

(a)

Total # of cells 15 895 799̇906

Drainage 0–2.0 3205 20.164 215 911 26.992 0.747 –
2.0–4.0 4190 26.360 229 116 28.643 0.920 –0.125
4.0–6.0 2246 14.130 103 550 12.945 1.092 –0.096
6.0–MAX 6254 39.346 247 695 30.966 1.271 0.278
. . . . . . . . . . . . . . . . . . . . .
7.970–9.650◦ 2331 14.665 100 361 12.547 1.169 0.679
9.650–11.310◦ 2337 14.703 82 483 10.312 1.426 0.867
11.310–MAX 7480 47.059 212 909 26.617 1.768 0.920

Distance to road 0–40 m 1056 6.644 18 829 2.354 2.822 8.730
40–200 m 6325 39.792 142 495 17.814 2.234 8.579
200–360 m 3793 23.863 104 251 13.033 1.831 8.235
360–520 m 2339 14.715 89 688 11.212 1.312 7.700
. . . . . . . . . . . . . . . . . . . . .
1160–1640 m 128 0.805 94 142 11.769 0.068 –
1640–MAX 1 0.006 111 207 13.903 0.000 –0.281

Distance to river 0–200 m 2322 14.608 187 133 23.394 0.624 –0.281
200–400 m 2282 14.357 152 535 19.069 0.753 –0.232
400–720 m 3415 21.485 186 938 23.370 0.919 –0.067
720–840 m 1285 8.084 57 407 7.177 1.126 –
. . . . . . . . . . . . . . . . . . . . .
447–514 m 2976 18.723 78 037 9.756 1.919 5.892
514–542 m 1374 8.644 30 252 3.782 2.286 6.087
. . . . . . . . . . . . . . . . . . . . .

Slope exposure East 2085 13.117 124 267 15.535 0.844 0.000
South-east 2425 15.256 103 238 12.906 1.182 –0.065
South 1472 9.261 57 041 7.131 1.299 –0.404
South-west 2026 12.746 75 077 9.386 1.358 –0.235
West 1445 9.091 68 680 8.586 1.059 –0.465
North-west 1741 10.953 96 289 12.038 0.910 –0.405
North 2009 12.639 88 662 11.084 1.140 –0.068
North-east 2413 15.181 149 848 18.733 0.810 –0.311
Flat 279 1.755 33 170 4.147 0.423 0.285

Land coverage Urban fabric 1178 7.411 3244 0.406 18.274 28.830
Arable land 3632 22.850 463 089 57.893 0.395 25.577
Olive groves 1194 7.512 21 920 2.740 2.741 26.993
Permanent meadows 0 0 1287 0.161 0 –173.306
Sparsely vegetated areas 0 0 1466 0.183 0 –170.712

Lithology Terraced alluvial 0 0 49 250 6.157 0 –199.178
Loose pebbles 2280 14.344 95 142 11.894 1.206 –198.986
. . . . . . . . . . . . . . . . . . . . .
Clays marns and silty clays 9261 58.264 254 341 31.796 1.832 1.292

Intercept –39.072
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 1 

Figure 8. Susceptibility map produced by the LR analysis. 2 

 3 

Fig. 8. Susceptibility map produced by the LR analysis.

The “distance from roads” factor is inversely proportional
to the regression coefficients. This effect could be explained
by the stress induced on a slope by a road, or a network of
roads, in terms of the disruption of the natural profile, and the
loads imposed by construction materials and vehicles. On
the contrary, the “distance from rivers” factor is directly con-
nected with the landslide susceptibility. Increasing distances
(i.e. the absence of local stable drainage systems) correspond
to higher positive regression coefficients. As reported by
other authors, the absence of a drainage system could give
rise to a higher level of soil saturation. In particular, a well-
defined trend toward increasing coefficients is detected by the
analysis for classes up to 720 m. Other causal factors do not
show well-defined trends and their correlations with the oc-
currence of landslides appear to be very weak. In addition to
the regression coefficients, Table 3 includes the results pro-
vided by the frequency ratio analysis that is very commonly
performed beside the LR analysis. The ratio between the per-
centage of cells subject to landslide within the class (a) and
the overall percentage of cells in the same class (b) consti-
tutes an “index of presence” assigned to such a class in areas
threatened by slope instabilities, and helps to interpret the
results provided by RL.

Finally, after recombining the coefficients with related
classes of individual causal factors, a susceptibility map was
produced. In Fig. 8, the susceptibility is expressed as prob-
ability levels and a ranking of classes ranging from low to
very high values is shown.

As shown in the map in Fig. 8, about 10% of the investi-
gated area is classified as highly susceptible to landslides oc-
currence, with probability levels ranging from 75% to 100%.
This is not surprising since all the small municipalities in-
volved in the study are continually threatened by slope fail-
ure, and restoration of the transportation infrastructures is
very often required after heavy rain phenomena.

7 Conclusions

The landslide susceptibility map prepared in the frame of the
present work is a step forward in the management of land-
slide hazard in the Daunia area. The LR methodology has
demonstrated itself to be a suitable tool when the relation-
ships between landslides and causal factors have to be anal-
ysed. Such a result is achieved by the inspection of the re-
gression coefficients that determine the role played by influ-
encing factors on the investigated phenomenon. The “clays,
marls and silty clays” class correspond to areas that are par-
ticularly prone to landslide occurrences in addition to land
coverage classes related to anthropogenic environments. As
the main outcome of this work, a landslide susceptibility map
was finally produced and validated. Up to 10% of the whole
territory was assigned to the “high” susceptibility level, re-
vealing also the geographical distribution of the areas most
prone to landslide occurrences.

However, some weaknesses of this methodology have to
be pointed out. Firstly, the analysis is still based on an
input-output system due to the lack of full statistical capac-
ity within the main GIS packages. In applying the LR model
to the geographical data, an external package was necessary
for the statistical analysis. However, these packages do not
include advanced tools supporting the final mapping of re-
sults produced by the analysis and so the resulting data have
to be reintroduced into the GIS environment. Implementa-
tion of the whole analysis in a single working GIS package
is, therefore, essential to avoid time-consuming input-output
procedures and other restrictions related to the use of sepa-
rate applications. Secondly, owing to the low scale data used
for such regional studies, the results are not very useful on a
site-specific scale, where more detailed information and the
geo-mechanical properties of landslides have to be consid-
ered.

Attention must now shift to aspects relating to determining
the uncertainty level affecting the data, and toward the def-
inition of an error model able to assess the reliability of the
final predictions. Once the uncertainty of the original data
has been evaluated, methods such as sensitivity analysis or
error propagation could be applied. Should the final relia-
bility fall below the threshold of acceptability, new data or a
strategy for improving the existing information would need
to be implemented. In particular, the DEM accuracy has to be
carefully investigated, since the altitude data were the basis
of many of the factors used.
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Kolat, Ç., Doyuran, V., Ayday, C., and Süzen, M. L.: Preparation of
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