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Abstract. Debris flows generally propagate along steep
mountain torrents with dynamics primarily governed by
gravitational and frictional forces. Thus, debris flows mod-
elling can be successfully performed through the application
of kinematic models, which consider only the effects of slope
and friction and neglect the remaining terms of the momen-
tum equation. However, the diffusion processes that can be
observed in the field, such as the spreading of the debris flow
wave as it flows downstream, can not be theoretically pre-
dicted by kinematic models, since diffusion is a second-order
process neglected in the kinematic approximation. In this
paper, this issue is discussed and an application for both a
generalized diffusion wave model and a kinematic model is
proposed of a debris flow which occurred in an Italian in-
strumented torrent to identify, in a real case scenario, the
effective value of the neglected terms in the kinematic ap-
proximation.

1 Introduction

Debris flows usually occur in mountain torrents characterised
by steep channel slopes. Debris flows may significantly dif-
fer as far as the number of surges following the main wave
(or superimposed to it), maximum discharge, front height
and magnitude are concerned. These general characteristics
may vary from case to case, depending on triggering con-
ditions, channel geometry and the rheology of the mixture
(Takahashi, 1991). Nevertheless, debris flows share some
similarities. In particular, debris flows show two diffusive
characteristics as they travel downstream:

1. spreading of the hydrograph;
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2. decay of front height (Pierson, 1986; Johnson, 1970;
Genevois et al., 2000; Arattano and Marchi, 2008; Iver-
son, 1997; Ḧurlimann et a., 2003).

Similar characteristics can also be observed in flume ex-
periments performed to simulate debris flow mechanics (Pu-
dasaini et al., 2005; Lanzoni and Tubino, 1993). The reduc-
tion of the front height and the spreading of the debris flow
hydrograph may also be observed for lahars (Pierson et al.,
1990).

Mathematical models are commonly employed to simu-
late the propagation of debris flows along the torrent and
predict the front height evolution, the hydrograph deforma-
tion and then the deposition on the fan. The simulation of
the propagation phase of the flow within the channel bound-
aries is normally performed through 1-D models, using the so
called Saint-Venant equations, while the deposition is simu-
lated through 2-D models.

A flow that takes place in a steep channel is governed pri-
marily by gravitational and frictional forces and, to a much
smaller extent, by the local and convective inertial forces,
which originate from the local variation of velocity and by
the flow depth gradient, respectively. For this reason, kine-
matic models have been proposed in literature to simulate the
propagation on steep slopes of either water waves (Lighthill
and Whitham, 1955) and debris flows (Arattano and Savage,
1994). Kinematic models, in fact, neglect the local variation
of velocity and the flow depth gradient in the Saint-Venant
momentum conservation equation and take into account only
the gravitational and frictional forces. Kinematic models ap-
ply when the flow takes place along steep channels, as it
actually occurs for the mountain torrents along which de-
bris flows propagate. However, from a theoretical viewpoint,
kinematic waves cannot diffuse because the diffusion is given
by those very two terms mentioned above that are neglected
in the equation of motion (the momentum equation). Kine-
matic waves can convect downstream and transport mass in
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the process, but they cannot dissipate their discharge or flow
stage. Therefore, the effective capability of kinematic mod-
els to simulate real debris flows and their observable diffu-
sive characteristics as they travel downstream, as in the case
of the Arattano and Savage (1994) model, should be better
understood and explained. Moreover, the effect of the dif-
fusive terms should be quantified to verify its amount and a
discussion is needed about the possibility to adequately sim-
ulate debris-flow processes through kinematic models.

2 The kinematic model

Modelling a water-sediment flow on a steep slope is gener-
ally made using the Saint-Venant equations, which are ob-
tained by assuming a hydrostatic pressure distribution over
the flow depth, no erosions and depositions and slowly vary-
ing cross-sections. The Saint-Venant equations consist of the
continuity equation, which is (assuming a rectangular cross-
section shape):
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In Eq. (2), the terms on the left side are the bed slope and the
pressure gradient and the terms on the right side are the local
and convective inertia and the energy gradient, respectively.

A kinematic wave can be defined as a shallow water
wave with the assumption that the gravitational and frictional
forces prevail on the inertial forces, so that the momentum
equation reduces toS0=S. Consequently, in kinematic waves
a direct relationship between the flow velocity and the flow
depth holds:

U = ksh
n
√

S = ksh
n
√

S0 (3)

The coefficientsks,n, in Eq. (3) depend on the rheological
behaviour of the flowing mixture and may vary in a wide
range (Arattano et al., 2006).

According to Ponce (1992), a kinematic wave can be de-
fined in different ways, first and foremost as a wave that
transports mass, as expressed in Eq. (1). As pointed out by
Ponce (1991, 1992), Eq. (3) plays a key role in the model.
In fact, neglecting to take into account the terms for the local
variation of velocity and the flow depth gradient, it imposes
the physical and mathematical constraint that the wave can-
not diffuse. In fact, diffusion is a second-order process that
is described precisely by those neglected terms (local iner-
tia, convective inertia and pressure gradient). Therefore, a
kinematic wave cannot show any dissipation, in particular,
it should not be able to account for any spreading in space
and time of both the discharge and flow stage (Ponce, 1991,
1992).

If some sort of dissipation was observed in a kinematic
wave numerical simulation, it would only be due to the con-
version of the partial differential Eq. (1) into a finite differ-
ence equation to run the simulation (Ponce, 1991, 1992).
The amount of this numerical dissipation would depend on
the chosen space and time grids (1x, 1t) and would prop-
agate in the numerical computation, thus, affecting the final
results. Consequently, the comparison between recorded data
and the results obtained by the mathematical simulation can
be misleading, as numerically induced errors could not be
negligible.

While all this applies to numerical modelling, analytical
versions of the kinematic model should not show any dissi-
pation at all, because in the analytical models no numerical
integration schemes are used (e.g. finite difference or finite
elements schemes) and, therefore, no numerical diffusion is
possible. Nevertheless, in 1994 Arattano and Savage pro-
posed an analytically deduced kinematic wave model for de-
bris flows that is apparently (and paradoxically) capable of
simulating diffusive characteristics. It consists of two para-
metric equations, obtained by assuming a triangular shape of
the wave att=0 as one of the boundary conditions.

The two parametric equations of the Arattano and Sav-
age (1994) kinematic model give the position of the front:

xf =
L H (n+1)

2nhf
+

(n−1)Lhf

2nH
(4)
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and the flow depth behind the front:

x −ks
√

S(n+1)hnt −
L

H
h = 0 (6)

The model, which has been successfully applied to field data
(Arattano and Savage, 1994; Arattano et al., 2006), analyti-
cally predicts a progressive reduction of the front depth as the
wave flows downstream and a spreading of the debris flow
hydrograph that corresponds to a continuous increase of the
wave length. These are two typical diffusive manifestations
that a kinematic model should not be able to simulate. Thus,
this apparent paradox needs a brief discussion.

One of the assumptions made by the authors is that the
total volume of the debris flow remains constant during the
entire propagation process, that is no erosions or depositions
take place or erosions and depositions balance out (Arattano
and Savage, 1994). At timet=0, the shape of the debris flow
is assumed to be triangular, with a total lengthL and front
depthH (Fig. 1), according to:{

0≤ x ≤ L

h = bH
L

x
for t = 0 (7)

The assumption of a constant volume is expressed as follows
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Fig. 1. Scheme of kinematic wave, as proposed by Arattano and
Savage (1994).

(assuming a rectangular shape of the channel):

b

xf∫
0

hdx =
bLH

2
(8)

Integration of Eq. (8) starts atx=0 and stops atx=xf where
the integral is equal to the total volume. Since the starting
point of the integration remains fixed (x=0), the integration
is implicitly carried out assuming that, for any givenε>0
arbitrarily chosen:

ε∫
0

hdx > 0 (9)

As a consequence of the assumption of a constant volume
and of the integration over the intervalx=[0;xf], the front
height must progressively decrease. This is a result of the
particular choice of the boundary conditions needed to solve
the system equations given by Eq. (1) and Eq. (3). This can
be easily understood if we consider that the portion of the
wave behind the peak, that is the decreasing limb of the hy-
drograph, follows the peak with a slower velocity. This is
due to the direct dependency of velocity on flow height, as
expressed by Eq. (3), and to the progressive decrease of flow
height behind the main wave front due to the assumption of
a triangular form for the initial debris mass. Thus, the whole
debris flow wave elongates and the continuity equation then
imposes the peak height to decrease.

It must be noticed that a different choice of the boundary
conditions would have lead to completely different results.
As a matter of fact, very different boundary conditions can
be imposed for a kinematic model and these can then greatly
influence the final results. As an extreme example, it could
even be possible to impose that the integration starts from the
front that flows downstream with a celerity given by:

c = ks(n+1)H n
√

S (10)

These choices correspond in adopting an integration interval
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Figure 2. Scheme of kinematic wave, as proposed by Eq(s).(12 - 13). 2 
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Fig. 2. Scheme of kinematic wave, as proposed by Eqs. (12–13).

that ranges between the front itselfxf and the position of the
tail. In this way, the integral (8) becomes:

x(h=H)∫
xt

bhdx =
bLH

2
(11)

wherex(h=H) is the abscissa where the debris flow height
is h=H , andxt is the tail of the debris flow, where the flow
depth is not necessarily equal to zero.

Even though this would lead to unrealistic results, it could
nevertheless be mathematically imposed and the equation
could be consequently solved to obtain:

xf = L+ks(n+1)H nt
√

S (12)

ksnH n+1
√

St −ksn(htail)
n+1

√
St −

L

H

h2
tail

2
= 0 (13)

These equations predict that the tail thickens downstream and
that the head of the debris flow remains unchanged (Fig. 2).
Note that the latter is a consequence of the particular choice
of the integration interval and it is not imposed a-priori.

As mentioned earlier, these results are unrealistic but they
are presented here to show the strong dependency of the solu-
tion on the specific boundary conditions that are chosen. The
capability of the Arattano and Savage (1994) model to sim-
ulate debris flow propagation and the diffusive effects that
take place in nature only derives from a peculiar choice of
the boundary conditions, while the model still remains inca-
pable of simulating the natural diffusions taking place along
the debris flow wave.

Since we have shown that there is no real capability to sim-
ulate any real diffusion through a kinematic wave, it remains
to be established if the amount of effective diffusion actually
taking place in debris flow waves is small enough to allow
the use of such an approximation to satisfactorily simulate
debris flow propagation. In the following, a nonlinear model
proposed by Todini (2007) will be applied to investigate this
issue. The model will be used to simulate a real debris flow
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Fig. 3. The Moscardo Torrent basin (3) and its alluvial fan (4). (1)
Debris flow initiation area; (2) instrumented channel stretch where
two ultrasonic sensors are placed 75 m apart from each other.

that took place in Rio Moscardo (North-Western Italy, Fig. 3)
on 23 July 2004, and to compare the respective roles played
by the diffusion and by the kinematic terms. A detailed de-
scription of the debris flow that has been simulated can be
found in Arattano et al. (2006). In the following figure, a
sketch of the instrumented watershed basin is shown, with
the location of the ultrasonic gauges.

The debris flow stage was measured by two ultrasonic
gauges, at two different cross-sections. The lymnographs al-
lowed us to investigate on the rheology of the recorded de-
bris flow (Arattano at al., 2006) by means of a mathematical
model. In the latter, the upstream hydrograph (Fig. 4) was
used to set the upstream boundary conditions.

The simulated results have been compared to the flow
heights recorded at the downstream cross-section by the sec-
ond ultrasonic sensor.

3 Kinematic-diffusive model

As previously mentioned, Eq. (3), which is a simplified form
of the Saint-Venant momentum equation, implies that no
physical diffusion is taken into account in the simulations,
since diffusion is a second-order effect. However, physical
diffusion cannot be neglected a priori. In fact, along the in-
creasing limb of the hydrograph in particular, the depth gra-
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Figure 4. Upstream lymnograph of the debris flow occurred on  July 23, 2004 4 
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Fig. 4. Upstream lymnograph of the debris flow occurred on 23 July
2004.

dient is no more negligible and, as a consequence, Eq. (3)
does not hold any more. The discharge is higher than that cal-
culated with Eq. (3) along the rising limb of the hydrograph,
and it is smaller along its falling limb, as it is expressed by
the so-called looped stage-discharge curves (Chow, 1959).

Lighthill and Witham (1955), in order to take into account
a small amount of diffusion, tried to extend the kinematic
model by considering the terms that depend on the flow gra-
dient and neglecting the momentum source terms and the
terms that depend on local inertia.

By considering the continuity equation and the momentum
equation together (where the local inertial and convective in-
ertial terms are neglected), it is obtained (Ponce, 1991, 1992;
Todini, 2007):

1

c

∂Q

∂t
+

∂Q

∂x
−υ

∂2Q

∂x2
= 0 (14)

with c and υ that are the kinematic wave celerity and hy-
draulic diffusivity, respectively, defined as:

c =
1

b

dQ

dh
(15)

υ =
Q

2bS0
(16)

Equation (14) can be solved either analytically or numeri-
cally.

In the present work, a nonlinear model recently proposed
by Todini (2007), for the computation ofQ (c andυ vary
with time) will be used to compare the roles played by the
diffusion terms and by the kinematic terms.

The computation ofh, can be made by solving the continu-
ity equation, Eq. (1), by means of a first order approximation:
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whereQn
i andhn

i represent the numerical approximation:
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Q(xi,tn);h(xi,tn), with xi = x0+ i1x; tn = t0+n1t , being
i = 1,2,...,M; n = 1,2,...,N , andα, β numerical parame-
ters of integration (Abbot and Cunge, 1982).

The model givesQ = Q(c,υ), where both celerityc and
diffusivity υ depend on the Courant numberCn, defined as
follows (Todini, 2007):

Cn =
wave.celerity

computation.celerity
(18)

The model allows the computation of the total height of the
debris flow in space and time, it is mass conservative, and al-
lows the comparison of the role played by the diffusion terms
in Eq. (14) and that played by kinematic terms.

4 Application of the kinematic-diffusive model

Todini’s (2007) diffusive model was applied to simulate the
propagation of a debris flow which occurred on 23 July 2004
in the Moscardo torrent, an instrumented basin located on the
northeastern Italian Alps (Fig. 3) (Arattano et al., 1997).

The debris flow depths were measured at two different
cross-sections, located 75 m apart, by means of two ultra-
sonic sensors. The availability of two hydrographs (Figs. 4
and 5) has allowed the calibration of the rheological param-
eters of Eq. (3) (Arattano et al., 2006). The upstream hy-
drograph has been used as an upstream boundary condition,
while the downstream hydrograph has been used to compare
the simulation results and the recorded data.

The values of the rheological parameters of Eq. (3) have
been assumed to be the same as those obtained by Arattano et
al. (2006), employing the complete Saint-Venant equations,
namelyks=4 m−0.8/s andn=1.2. The results (Fig. 5) show a
good match between computed and recorded hydrographs.

Note that the passage of the debris flow has increased the
bed elevation at the downstream station. This could be due to
the filling of some erosion under the downstream ultrasonic
sensor that took place before the arrival of the debris flow.
Thus, the bed elevation surveyed after the passage of the de-
bris flow has been used in the simulation and this explains
the significantly different flow stage that the simulation and
the recordings show in Fig. 5 before the arrival of the debris
flow front.

The goal of evaluating the amount of physical diffusion
in the recorded debris flow has been pursued calculating the
ratio:

rate=

1
c

∂Q
∂t

+
∂Q
∂x

υ
∂2Q

∂x2

(19)

This ratio compares the sum of the first and second terms of
Eq. (14) to the third one. It is noticeable that if in Eq. (14)
one assumesυ=0, the model expressed only by the sum of
the first and second term, that is:

1

c

∂Q

∂t
+

∂Q

∂x
= 0 (20)

Fig. 5. Comparison of recorded and simulated hydrograph (simula-
tion performed with1x=1 m;1t=1 s) at the downstream reach.

Fig. 6. Rate given by Eq. (19).

is the same as the kinematic model. Consequently the higher
the rate given by Eq. (19), the higher the influence of kine-
matic terms is, with respect to the diffusive term (second par-
tial derivative).

In Fig. 6, a plot with the value of this rate for the down-
stream hydrograph is shown. Figure 6 shows that the dif-
fusion term can be of the same order of magnitude as the
remaining terms. This means that diffusive effects cannot
be neglected a priori. Their main effects are exerted in the
front of the debris flow, where the curvature ofQ is also not
negligible. Therefore, the application prefers a mathematical
model capable of taking into account the diffusion terms.

However, the uncertainties regarding the determination of
the rheological parameters, together with their influence on
the simulation results and with the influence of channel ge-
ometry, can be so great to significantly hide, in some cases,
the diffusion effects. This latter is probably the main reason
why the Arattano and Savage (1994) model has been capable
of such a good representation of the field observations, even
though it cannot represent any actual diffusive effect.
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Fig. 7. Rate of the physical diffusivity to numerical diffusivity
(Eq. 21).

Since Todini’s (2007) model is applied through a numeri-
cal simulation, it has inevitably introduced some amount of
numerical diffusion. In order to compare the effects due to
numerical and physical diffusion, it is possible to use the cell
Reynolds number,D, introduced by Todini (2007).

D is given by the ratio between the physical and numerical
diffusivity, that is:

D =
Q

bS0c1x
(21)

The largerD is, the higher is the role of the physical diffu-
sivity.

In the simulated debris flow (Fig. 7)D is always larger
than 1, with a maximum of 5 in the proximity of the front
of the debris flow. This confirms that, assuming1x=1 m
and1t=1 s, the physical diffusivity prevails on the numerical
one.

Thus, a numerical model can be safely employed without
greatly affecting the results because of the numerical dissi-
pation.

5 Conclusions

The diffusive processes that take place in debris flow can
be mathematically simulated only if second order terms are
taken into account in the Saint-Venant equation. Conse-
quently kinematic models, though widely used in the litera-
ture, cannot fairly reproduce the dissipation that take place
in real debris flows. However, due to a particular choice
of boundary conditions, it has been shown that a kinematic
model expressed in analytical form allows the simulating of
two large-scale diffusion effects: the downstream spreading
of the debris-flow wave and the progressive decrease of its
main front height. Then a mathematical convective-diffusive
model has been used to simulate a field debris flow which
occurred in 2004 in an Italian torrent, whose rheological be-
haviour has been described by means of a Chézy-like for-

mula. The effects of local diffusion have been determined
and compared with the effects due to other terms. Physical
diffusive processes and processes due to numerical diffusion
have also been quantified and compared. The results showed
that physical diffusion processes are not negligible with re-
spect to kinematic (mass transfer) processes. Therefore, the
application of a mathematical model capable of taking into
account the diffusion terms should be preferable and it has
been shown that a numerical model can be safely employed
without greatly affecting the results because of the numerical
dissipation that it inevitably introduces.

Appendix A

List of symbols (SI units).

b = width of the flow
c = kinematic celerity
Cn = Courant number (dimensionless)
D = cell Reynolds number (dimensionless)
h = flow depth
H = initial height of the debris flow front
hf = height of the front of the debris flow
htail = height of the tail of the debris flow
ks,n = rheological parameters
L = initial length of the debris flow
M = total number of space steps of integration
N = total number of time steps of integration
Q = total discharge (water and sediment)
S = energy gradient (dimensionless)
S0 = channel bottom slope (dimensionless)
t0 = time at whichhf is at thexf progressive
U = mean velocity of the flow
x, t = independent variables (time and space)
xf = abscissa of the front of the debris flow
xt = abscissa of the tail of the debris flow
1x, 1t = finite differences inx andt

α, β = numerical parameters (dimensionless)
υ = hydraulic diffusivity
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