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Abstract. In this paper we produce projections of seasonal
precipitation for four Mediterranean areas: Apulia region
(Italy), Ebro river basin (Spain), Po valley (Italy) and An-
talya province (Turkey). We performed the statistical down-
scaling using Canonical Correlation Analysis (CCA) in two
versions: in one case Principal Component Analysis (PCA)
filter is applied only to predictor and in the other to both pre-
dictor and predictand. After performing a validation test,
CCA after PCA filter on both predictor and predictand has
been chosen. Sea level pressure (SLP) is used as predictor.
Downscaling has been carried out for the scenarios A2 and
B2 on the basis of three GCM’s: the CCCma-GCM2, the
Csiro-MK2 and HadCM3. Three consecutive 30-year pe-
riods have been considered. For Summer precipitation in
Apulia region we also use the 500 hPa temperature (T500)
as predictor, obtaining comparable results. Results show dif-
ferent climate change signals in the four areas and confirm
the need of an analysis that is capable of resolving internal
differences within the Mediterranean region. The most ro-
bust signal is the reduction of Summer precipitation in the
Ebro river basin. Other significative results are the increase
of precipitation over Apulia in Summer, the reduction over
the Po-valley in Spring and Autumn and the increase over
the Antalya province in Summer and Autumn.

1 Introduction

In the last few years the use of very powerful computers
has permitted the development of more and more sophisti-
cated climatic models. These models, including the dynam-
ics of both atmosphere and oceans, are generally referred to
as Global Climate Models (GCM). Though recent improve-

Correspondence to:M. M. Miglietta
(m.miglietta@isac.cnr.it)

ments of computational power are producing global simu-
lation with progressively higher resolution, for most of the
available simulations the resolution is of some degrees of
latitude and longitude (Randall et al., 2007). To check the
validity of these models, one performs a control run simu-
lation (CTR) obtained with the parameters corresponding to
the atmospheric composition measured in the 20th century.
If the obtained results are statistically similar to the histori-
cal records of pressure, temperature, humidity, precipitation,
then the model dynamics is a reliable approximation of the
real climate dynamics.

The future climate is computed by the same GCM using
the atmospheric composition predicted in the different sce-
narios defined by the IPCC in the Special Report Emission
Scenarios (SRES) (IPCC, 2001). The climatic projection ob-
tained in this way has the spatial resolution given by the grid
of the GCM. Though the amount of computational resources
available for the simulation is increasing, the grid spacing in
mid-latitude regions is still some hundreds of kilometers. In
any case, even the finest available resolution is sufficient for
describing the pressure and temperature fields, but it is not
suitable for precipitation (von Storch et al., 1993; von Storch
and Zwiers, 1999; Zorita and von Storch, 1999).

For this reason, regional downscaling is crucial for de-
scribing the precipitation climate of the Mediterranean re-
gion, which is characterized by very large space variability.
This is produced by steep morphological and complicated
land-sea patterns (seeLionello et al., 2006for a review), and
by its location in a transitional region from the mid-latitude
mild and wet climate in the north to the tropical hot and
dry climate in the south. Therefore, Mediterranean Winter
precipitation is affected by mid-latitude regimes, such as the
North Atlantic Oscillation (NAO) and the East Atlantic (EA)
pattern (Trigo et al., 2006), and by tropical phenomena like
El Niño Southern Oscillation (ENSO). Mediterranean Sum-
mer precipitation has been connected with both the Asian and
the African monsoon and with strong geopotential blocking
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anomalies over central Europe (Alpert et al., 2006). Pro-
cesses active at a wide range of spatial and temporal scales
result in many climate types and great spatial variability.
These processes are induced by the complex morphology
(e.g. the effect of the Alpine chains on the air-flow, the pres-
ence of the Mediterranean Sea itself) and by the effect of an-
thropogenic and natural aerosols (Lionello et al., 2006). Sta-
tistical downscaling methods, as those applied in this study,
are useful tools for the simulation of the effects of these local
processes and features.

In the Mediterranean region the trend in precipitation in-
tensity is generally negative but rarely significant (Brunetti
et al., 2004, 2006), and with high spatial and monthly vari-
ability even in a limited region (Gonzales-Hidalgo et al.,
2009). Other authors (Jacobeit et al., 2007; Xoplaki, 2002;
Xoplaki et al., 2004) reported a decrease in precipitation in
the Mediterranean area during the second half of the 20th
century, specifically a decrease of Winter precipitation. This
decrease is prevalently attributed to the positive phase on the
NAO in the last decades (Hurrell, 1995). However, the de-
crease of precipitation during Winter of the last decades is
not reproduced by the global climate models.

GCM’s generally agree on a substantial future drying of
the Mediterranean region in all the different scenarios, espe-
cially in the warm season, with a precipitation decrease ex-
ceeding 25–30% (Giorgi and Lionello, 2008). The projected
reduction of precipitation is, however, not uniform in the
whole region. Some models predict an increase of precipita-
tion during Winter over some areas of the northern Mediter-
ranean basin, particularly the Alps, and during Summer in the
Middle East. Therefore, it is important to further investigate
the detailed spatial distribution of the precipitation change
and its actual evolution by suitable downscaling techniques.
Note that decrease and irregularity of precipitation are impor-
tant factors that critically contribute to the large sensitivity of
the Mediterranean region to climate change (Giorgi, 2006).

There are two main categories of downscaling techniques:
dynamical and statistical downscaling. Dynamical down-
scaling is performed using climate models over a limited do-
main with high resolution (nowadays 20–50 km) and using
the results of a GCM as initial and boundary conditions.

Several authors developed statistical downscaling tech-
niques for climatic predictions in order to provide scenar-
ios for selected small regions or complement the results
of dynamical models. Statistical downscaling represents a
computer-wise cheap method that is very suitable for de-
scribing seasonal climate variability at regional and local
scale. It can contribute to reach an higher confidence on
future projections, and can be adapted for a wide range of
applications. Statistical downscaling is based on statistical
relationships linking regional climate variables (predictand)
to large-scale atmospheric variables (predictor). Such links
are determined during an observational period and are veri-
fied using independent data outside this period. The identi-
fied statistical relationships are then used for computing fu-

ture climate projections. Statistical downscaling has been
successfully applied to precipitation climate change in the
Mediterranean region already in the 90’s (e.g.,von Storch et
al., 1993; Corte-Real et al., 1995). The STARDEX project
(Goodess, 2005) included a large set of statistical downscal-
ing studies. A recent example of statistical downscaling for
the wet season precipitation is provided byHertig and Ja-
cobeit(2008) that reports a contrasting behavior for the pe-
riod 2071–2100 compared to 1990–2019. The wet season
is projected to become shorter but wetter in the western and
northern Mediterranean regions, while precipitation changes
are mainly negative in the eastern and southern parts of the
basin.

In this study we adopt the sea level pressure (SLP) or the
500 hPa temperature (T500) as large scale predictor, and pre-
cipitation as predictand and we compare the performance of
the Canonical Correlation Analysis (CCA) after applying the
Principal Component Analysis (PCA) filter to the predictor
and the CCA after PCA filtering applied to both predictor
and predictand.

The datasets used in this study are the SLP EMULATE
project, the ERA-40 reanalysis of ECMWF for T500 and
the Climate Research Unit (CRU) of East Anglia University
monthly precipitation dataset. We downscale the predictions
relative to the SRES A2 and B2 of three different GCM’s: a)
the CSIRO-Mk2 model from the Commonwealth Scientific
and Industrial Research Organization (briefly Csiro), b) the
HADCM3 model developed at the Hadley Centre for Cli-
mate Prediction and Research UK (briefly Hadley), c) the
GCM2 model developed at the Canadian Center for Climate
Modeling and Analysis, CCCma (hereafter Canadian).

The focus in the present study is on the estimation of pre-
cipitation trends in climate change scenarios. This analysis
is particularly relevant for the economy of the Mediterranean
region, as rainfall variability represents a major source of risk
for crop systems and changes in the pluviometric regimes can
significantly affect the agriculture of entire regions (Vasili-
ades et al., 2009).

In this study we followed the STARDEX (Goodess, 2005)
suggestion of applying CCA methods locally with the fol-
lowing peculiarities: that the analysis is extended to the
whole year, considering independently changes in single sea-
sons (Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, Sep-Oct-
Nov); that we use a set of relatively small targets, which are
identified as major agricultural areas; and that we analyze
each of them separately with the same procedure.

The paper outline is the following. In Sect.2 we describe
the datasets and the GCM’s used. In Sect.3 we briefly in-
troduce the statistical techniques used and we compare each
other. In Sect.4 we show the results of the downscaling of
precipitation relative to four different Mediterranean areas
for different scenarios. Finally, in Sect.5 conclusions are
summarized.
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2 Data

Data include predictor and predictand.

2.1 Predictor: SLP from EMULATE dataset

The Sea Level Pressure (SLP) EMULATE dataset (Ansell et
al., 2006) is based on daily average sea level pressure values
for the period from January 1850 to December 2003. The
data cover the region from 70◦ W–70◦ N (top left corner) to
50◦ E–25◦ N (bottom right corner). The grid is 5◦×5◦ in lat-
itude and longitude. This means that at each time step the
dataset consists of 250 SLP values. The dataset covers the
region involved in the North Atlantic Oscillation (NAO) and
in the dynamical features responsible for precipitation in Eu-
rope.

2.2 Predictor: T500 from ECMWF

The ERA-40 monthly averaged 500 hPa temperature reanal-
ysis (Uppala et al., 2005) is retrieved from the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) data
server for the period from 1958 to 2001. The global data
are distributed on a Gaussian grid 320◦

×160◦ with a resolu-
tion of approximately 1.125◦×1.125◦. To obtain a resolution
comparable with that of SLP, we upscale the T500 data on the
same grid points of the EMULATE dataset. The upscaling is
recommended because in this way the resolution of both pre-
dictors is comparable with that of the GCM data available for
future scenarios.

2.3 Predictand: precipitation from Climate Research
Unit (CRU) of East Anglia University1

The predictand is obtained from the monthly averaged pre-
cipitation dataset called CRU TS 2.1 (Mitchell and Jones,
2005) for the period from January 1901 to December 2002
for a total of 102 years. From this dataset we extract the
data corresponding approximatively to four areas of agri-
cultural interest in the Mediterranean region: Apulia region
(Italy, 22 points), Ebro river basin (Spain, 24 points), Po-
valley (Italy, 30 points), Antalya province (Turkey, 6 points).
Data represent average values on a square grid of 0.5◦

×0.5◦.
The location of the points is shown in Fig.1. However, it
should be considered that the data coverage is scarse in some
periods (e.g. during the second world war), thus the high res-
olution of the dataset is only nominal in those years, espe-
cially in the smallest regions.

2.4 Global Climate Model data

We retrieve from the International Panel on Climate Change
IPCC-Data server2 the SLP and T500 projections relative

1www.cru.uea.ac.uk
2http://www.mad.zmaw.de/IPCCDDC/html/ddcgcmdata.html
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Fig. 1. Points of CRU dataset used for downscaling. The four areas
considered are indicated.

to the A2 and B2 scenarios of the Third Assessment Re-
port (TAR) for the following GCM’s models: a) the Com-
monwealth Scientific and Industrial Research Organization,
CSIRO, model CSIRO-Mk2 (briefly Csiro), b) the Hadley
Centre for Climate Prediction and Research UK, HCCPR,
model HADCM3 (Hadley), c) the Canadian Center for
Climate Modeling and Analysis, CCCma, model CGCM2
(Canadian). The CSIRO-Mk2 model is a spectral model
with R21 horizontal resolution (approximately 3.2◦ in lati-
tude× 5.6◦ in longitude) and 9 verticalσ -levels in the atmo-
sphere (Watterson et al., 1995) (top level atσ=0.021), includ-
ing a slab ocean sub-model with 21 levels. HadCM3 (Gor-
don et al., 2000) is a coupled model, with the atmospheric
component having 19 levels (top at 10 hPa) with a horizon-
tal resolution of 2.5◦ in latitude and 3.75◦ in longitude.
This is equivalent to a surface resolution of 417 km×278 km
at the Equator, reducing to 295×278 km at 45◦ of lati-
tude (comparable to a spectral resolution of T42). The
oceanic component has 20 levels with a horizontal resolution
of 1.25◦×1.25◦. The atmospheric component of CGCM2
(Flato et al., 2000) consists of a spectral model with a spec-
tral resolution T32 (horizontal resolution of approximately
3.75◦×3.75◦). It includes 10 vertical levels (top level at
η=0.012, McFarlane et al., 1992). The oceanic compo-
nent presents a horizontal resolution of 1.875◦

×1.875◦ with
29 vertical levels.

The choice of the models is motivated by the fact that for
all of them the Control Run from 1961 to 1990 is available
together with the A2 and B2 scenarios from 1991 to 2100.
The data are available on a 64×56 grid for Csiro, 96×73
for Hadley and 97×48 for Canadian. In all cases the GCM
predictions are interpolated on the same grid of the EMU-
LATE data in order to project them on the canonical patterns
obtained from the statistical model (see Appendix A for the
interpolation technique).
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3 The statistical techniques

In this study we compare the performance of Canonical Cor-
relation Analysis (CCA) applied in two variants, after per-
forming Principal Component Analysis (PCA) filtering on
predictor and on both predictor and predictand. These tech-
niques are well known, see for examplevon Storch and
Zwiers(1999), and we briefly describe them in Appendix A,
where we refer the reader for the notation used in the rest
of this paper. CCA after PCA prefiltering remains a con-
solidated and well established method for downscaling, cur-
rently used for climate change studies (e.g. Hertig and Ja-
cobeit, 2008). The CCA methods relies on the presence of a
linear link between regional precipitation and the large scale
predictor field (in this study SLP and 500 hPa temperature)
and of the invariance of such link in the projected climate,
which is assumed to be a small perturbation of the present
condition. This technique is consolidated and the purpose
of this study is not methodological, but it aims to provide a
focalized information on target areas of agricultural interest,
with seasonal resolution, in order to investigate the depen-
dence of the climate change signal in space and time.

3.1 Testing the techniques

Several studies on the applications of these techniques in cli-
matology are available in the literature (see for examplevon
Storch et al., 1993; von Storch and Zwiers, 1999; Zorita and
von Storch, 1999; Lionello et al., 2003). Here we briefly ex-
plain the logical scheme of the downscaling procedure. From
an observed time series of predictors (in our case the mean
seasonal SLP field or, just in one case, the T500 field) and
predictand (the accumulated seasonal precipitation) we es-
tablish, by means of atraining procedure, a statistical model,
which provides a tool for the computation of the predictand
from the predictors. We make the hypothesis that this statis-
tical model remains valid also in the SRES climate scenarios
and compute the predictands using the predictors extracted
from the GCM climate projections.

The choice of the time resolution in statistical downscal-
ing is a crucial point. If we would perform the CCA with a
time interval1t=1 day, we would obtain Canonical Patterns
for the predictor with horizontal scale that can be as small
as few tens of kilometers, because on such time scale the
precipitation is mainly due to low pressure systems close to
the region affected with the rainfall. In this case, the spa-
tial scale of the predictor,Fx , would be finer than the res-
olution of GCM simulations and it would be impossible to
adequately identify the predictor structure in the GCM out-
puts. As we decrease time resolution, CP’s with progres-
sively larger spatial scales are likely to result from the anal-
ysis. In this study we perform the downscaling procedures
on average seasonal precipitation grouping together Winter
(DJF, Dec-Jan-Feb), Spring (MAM, Mar-Apr-May), Sum-
mer (JJA, Jun-Jul-Aug) and Autumn (SON, Sep-Oct-Nov)

months, so that the large scale patterns responsible for vari-
ability at such long scale are likely to be reproduced by
GCM’s.

The data have been analyzed with two different versions
of Canonical Correlation Analysis: a) CCA after a PCA fil-
tering on the predictors (CCA-PCAX) and on both predictors
and predictands (CCA-PCAXY). In the case CCA-PCAX the
PCA filtering retains 15 eigenvectors describing more than
95% of the variance. The same happens for the predictors
in the case CCA-PCAXY while the predictands were filtered
retaining only 3 eigenvectors (describing more than 95% of
variance). As explained invon Storch and Zwiers(1999)
(p. 304) there are several criteria for the choice of the num-
ber of PCA eigenvectors to be retained. A different approach,
that von Storch and Zwiers(1999) however do not suggest,
is to consider the “knee” in the eigenvalues spectrum and to
retain only eigenvalues considerably greater than the asymp-
totic spectrum. We perform the calculation using also this
criterium obtaining comparable or worse results. All the
predictions by means of CCA are calculated using the first
two canonical conjugates that result as the only ones with
eigenvalues larger than the others. Using a larger number of
canonical conjugates does not improve the results.

The model has been validated splitting the historical time
series in two periods of the same length. As the whole series
is 102 years long, we have two 51 years long periods, respec-
tively 1901–1951, 1952–2002. In a first time we use the first
period as the training series, in order to build the statistical
model, and the second one as the validation one. After that
we change the roles of the two periods performing training on
the second half of the years and validation on the first one.
The agreement between the original data and the predicted
ones during the validation period is used to assess the quality
of the methods. The results of the test performed over the
four selected areas is shown in Table 1. The mean relative
error in the prediction during the validation period is defined
asσ/p̄, with

σ 2
=

τ∑
i=1

N∑
j=1

(
Yj (i)− Ỹj (i)

)2

τN
; p̄ =

τ∑
i=1

N∑
j=1

Yj (i)

τN
, (1)

whereN denotes the number of points in each area,τ the
number of time steps, andYj (i) and Ỹj (i) represent the
CRU and downscaled precipitation (at pointj and timei), re-
spectively (σ 2 is the mean squared error as discussed invon
Storch and Zwiers(1999), p. 396. In this paper we divide
it by the mean observed valuēp, thus obtaining a relative
error).

Columns labelled with “rev” stand for the training period
on the second half and validation on the first 51 years. Bold
numbers indicate the best value among the techniques. No-
tice that the best score for “reverse” experiments are con-
sidered separately from direct validation tests. There are
18 cases where CCA-PCAXY is the best choice and 14

Nat. Hazards Earth Syst. Sci., 10, 1647–1661, 2010 www.nat-hazards-earth-syst-sci.net/10/1647/2010/



L. Palatella et al.: Statistical downscaling for Mediterranean agricultural areas 1651

Table 1. Values of mean relative error for the different techniques
and for the four areas under consideration during the 51 year long
validation period. Columns labelled with “rev” refer to training on
the second half of the period and validation on the first one. Bold
numbers indicate best scores.

Season CCA-PCAX CCA-PCAXY
rev rev

Apulia
DJF 0.352 0.351 0.309 0.362
MAM 0.367 0.345 0.321 0.307
JJA 0.613 0.540 0.575 0.624
SON 0.361 0.352 0.360 0.301

Ebro river basin
DJF 0.355 0.374 0.335 0.316
MAM 0.287 0.307 0.301 0.289
JJA 0.405 0.374 0.402 0.397
SON 0.435 0.331 0.383 0.329

Po valley
DJF 0.428 0.449 0.401 0.393
MAM 0.443 0.444 0.468 0.476
JJA 0.299 0.292 0.285 0.279
SON 0.489 0.413 0.521 0.440

Antalya
DJF 0.425 0.313 0.402 0.308
MAM 0.492 0.353 0.513 0.382
JJA 0.562 0.934 0.749 0.961
SON 0.465 0.448 0.472 0.452

where CCA-PCAX is better. Even if a PCA filtering on pre-
dictands eliminates the small scale precipitation fluctuations,
which are probably not correlated with the large scale circu-
lations, the two methods produce similar results apart from
two cases, both in JJA (thus the specific results should be
taken with care).3

With the exception of Summer precipitation, the best re-
sults refer to Ebro river basin, then Apulia; the worst results
are obtained in the Po Valley and in the Antalya province.
In Summer all techniques lead to worse results with the ex-
ception of Po Valley, where the error becomes considerably
smaller.

In the literature several methods are used to assess the
validity of the statistical downscaling (seevon Storch and
Zwiers, 1999for a review). One approach is the use of the
Pearson correlationr. Nevertheless, this approach in some
cases may lead to misleading results because the short time
oscillations of the predictand may be not correlated to the
large scale dynamics of the predictor, so this fact will lead

3The low impact of Principal Component Analysis filter on final
results may be partially due to the change of coverage of stations,
used to produce the CRU analysis, during the analyzed period.
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Fig. 2. Ebro river basin: comparison between downscaled and CRU
precipitation in Winter (DJF). The top panel shows the 5-year run-
ning mean of the spatial average for the CRU dataset and down-
scaled precipitation during both training (first 51 years) and valida-
tion period (last 51 years). The bottom panel shows the scatter plot
of CRU versus downscaled spatially averaged precipitation. Empty
circles refer to the training period, filled circles to the validation
one.

to low values of the correlation coefficient even if the larger
time behavior of the real and predicted signal are correlated.
For this reason we decided to use the average error to evalu-
ate the performance of the different downscaling techniques.
For any case in Table2 we report the value of the Pearson
correlationr in the CCA-PCAXY case. Values ofr greater
than 0.36 are statistically significant with 49 degrees of free-
dom (51 time step – 2) forp<0.01. The values reported for
Apulia and Ebro river basin are significant for DJF, MAM
and SON. For Po Valley only DJF and JJA reverse are signif-
icant while for Antalya region only DJF reverse is significant.

Figure2 (obtained with the CCA-PCAXY method) shows
the average value of precipitation over the whole Ebro river
basin during the Winter season (the upper panel shows the
time series of the 5-year running average of precipitation,

www.nat-hazards-earth-syst-sci.net/10/1647/2010/ Nat. Hazards Earth Syst. Sci., 10, 1647–1661, 2010
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Fig. 3. First CP’s obtained using CCA-PCAXY on Ebro river basin precipitation. The left figure represents the SLP CP measured in Pa (blue
contours refer to negative values, red ones to positive). The two figures in the center represent the average winter SLP (hPa) plus (the top)
and minus (bottom) the SLP CP (blue contours refer to values lower than 1013 hPa, red ones to higher values). These figures show the actual
pattern of SLP when the coefficient of the CP is positive or negative. On the right we have the CP of precipitation measured in mm/month.

Table 2. Pearson correlationr for predicted and observed precipi-
tation in the validation period for the CCA-PCAXY technique. Pa-
rameters are the same as in Table 1; “rev” refer to training on the
second half and validation on the first one.

Season Pearsonr
rev

Apulia
DJF 0.549 0.400
MAM 0.484 0.423
JJA 0.327 0.103
SON 0.416 0.462

Ebro river basin
DJF 0.606 0.675
MAM 0.471 0.435
JJA 0.338 0.351
SON 0.452 0.492

Po Valley
DJF 0.628 0.613
MAM 0.080 0.019
JJA 0.326 0.420
SON –0.150 –0.036

Antalya
DJF 0.343 0.364
MAM –0.016 0.068
JJA 0.203 0.048
SON 0.270 0.276

the lower panel shows a scatter plot of CRU versus down-
scaled precipitation for individual years). The overall agree-
ment between the CRU data and the downscaled precipita-
tion during the validation period (1952–2002) demonstrates
the effectiveness of the technique.

Figure 3 shows the first CP for predictors and predic-
tands obtained on Ebro river basin DJF precipitation using
the CCA-PCAXY method (the results with CCA-PCAX, not
shown, are very similar). Note that using CCA-PCAXY
method the correlationρxy between the time coefficients
βx(t), βy(t) is much more stable than using CCA-PCAX,
meaning that its computation during the validation confirms
the value obtained during the training. Nevertheless, CP’s
and predictions obtained by the two techniques are quite sim-
ilar and reliable results could be obtained using both meth-
ods. Incidentally, we notice that the pattern of SLP associ-
ated with positive precipitation anomaly (top small panel in
the center of the figures) presents for both the techniques a
wide trough over the central Mediterranean Sea east of the
Iberian peninsula, suggesting that this configuration is re-
sponsible for Winter precipitation on the Ebro river basin.

In general precipitation is more difficult to predict in JJA
than in DJF. In order to get an independent qualitative evalua-
tion and provide an interpretation in terms of synoptic fea-
tures, the downscaling using the 500 hPa temperature (T500)
as predictor has been attempted over Apulia region. In fact,
we expect that in southern Mediterranean areas Summer pre-
cipitation are strongly correlated to small scale convective
events (Saaroni and Ziv, 2000) due to diurnal heating and to
the presence of cold air in the middle troposphere. The T500
data from the ERA-40 archive were upscaled to the same grid
used in the EMULATE project. Unfortunately these data
cover only the period from 1958 to 2001, so that the value
of the correlation is not directly comparable to that obtained
using SLP as predictor. Figure4 shows that the first CP for
T500 presents a cold air mass over southern Italy. This confi-
guration is consistent with the SLP first CP resulting from
the previous CCA-PCAXY analysis, which presents a posi-
tive SLP anomaly over northern Europe and a negative SLP
anomaly over southern Italy. This configuration strenghtens
subsidence in northern Europe while favors ascending mo-
tion over the Mediterranean Sea.
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4 Downscaling of Global Climatic Models (GCM)
projections

The CCA-PCAXY technique has been used for downscal-
ing precipitation over the four different areas for the whole
1961–2100 period and for both A2 and B2 SRES. Besides
the CTR period (1961–1990) three 30 year long sub-periods
are considered: 2011–2040 (I), 2041–2070 (II) and 2071–
2100 (III). For each subperiod the average precipitation is
computed over the four areas and the statistical significance
of differences with respect to the CTR is evaluated using the
Mann-Whitney test on ranks (Hollander and Wolfe, 1973). In
this test the individual ranks calculated on two series of data
are summed within each series, then the difference between
the two totals are compared under the null hypothesis that the
two series were obtained from the same distribution. If the
difference is larger than the threshold value (the 95% confi-
dence level has been adopted in this study), the null hypothe-
sis is rejected and the two series are considered significantly
different.

Figures5, 6, 7, and8 show for each season (DJF, MAM,
JJA, SON from top to bottom) and for Apulia, Ebro river
basin, Po valley and Antalya province, respectively, the mean
value of precipitation over the 30 years of CTR, I, II, III pe-
riods. The average CRU value for the CTR period (on the
left side of each panel) and the one standard deviation error
bar for each value are also shown. Points connected with
solid red line refer to A2 SRES, while those connected with
dashed blue lines refer to B2 SRES. In each figure the cir-
cles refer to Canadian GCM, the triangles to Csiro and the

reverse-triangles to Hadley Centre GCM. Filled and larger
symbols denote statistically significant differences with re-
spect to the CTR.

4.1 GCM validation and SLP field problem

Our analysis is potentially affected by the so-calledSLP field
problem(e.g.,Trigo and Palutikof, 2001), that is the inability
of models to reproduce the correct average value of SLP in
the CTR, especially the tendency to overestimate the differ-
ence between the Azores’ high and the low over Iceland. If
the GCM fails to predict the correct mean value in the CTR,
this leads to serious doubts about the capacity of the same
GCM to simulate precipitation. From the statistical down-
scaling perspective this is a very serious problem, because
precipitation over Europe is strongly correlated to the differ-
ence between Azores’ high and Iceland low (linked to the
NAO index). A wrong SLP mean field would prevent the
statistical downscaling from computing the correct mean pre-
cipitation. However, in literature, it is reported that, despite
this serious bias, the GCM’s are able to capture the correct
variability of SLP.

With particular regard to the three GCM’s used in this pa-
per in literature one finds several papers dealing with the val-
idation of the SLP predicted in the CTR.

It is known that the CCCma (Canadian GCM) (Flato et
al., 2000; Flato and Boer, 2001) simulates the mean sea
level pressure quite realistically, with the climatological fea-
tures faithfully captured (McFarlane et al., 1992). However,
some deficiencies are documented: for example, SLP in high
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Fig. 5. Mean and standard deviation of the downscaled precipi-
tation for the A2 (solid red lines) and B2 (dashed blue) scenario
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Fig. 6. The same as in Fig.5 for the Ebro river basin.
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Fig. 7. The same as in Fig.5 for the Po valley.

northern latitudes is lower than the observed values, in par-
ticular during DJF, when simulated cyclones in the Aleu-
tinian and Icelandic region are too intense. As a consequence
of the stronger intensity of the Iceland depression and of
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Fig. 8. The same as in Fig.5 for the Antalya province.

the Azores anticyclone, and of their shift respectively to the
south-east and over northern Africa, the model overestimates
the pressure gradient over western Europe (Osborn, 2002).
However, the daily variance of SLP in DJF and JJA agrees
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remarkably well with the observations, indicating a success-
ful simulation of the surface synoptic variability (McFarlane
et al., 1992).

McGregor et al.(1993); Smith (1994); Watterson et al.
(1995); Gordon and O’Farrell(1997) report that the CSIRO-
Mk2 (Csiro) reproduces well the major large scale SLP fea-
tures. The model has taken part in the international intercom-
parisons of models – PCMDI (Program for Climate Model
Diagnosis and Intercomparison4), performing well in differ-
ent regions (Lambert and Boer, 2001; Gordon et al., 2002).
For what concerns the western Europe climate, the location
of the Azores anticyclone and of the Iceland depression in
DJF are well reproduced, although the depth of the cyclone
is slightly overestimated, while a pressure trough, missing in
the observations, is simulated over the central Mediterranean
(Osborn, 2002).

Mean sea level pressure is generally well modeled by the
HadCM3 (Hadley) in comparison with the observations, as
reported inStratton(1999); Gordon et al.(2000); Pope et
al. (2000): the positioning and shape of the major equatorial
low-pressure belts, subtropical highs and mid-latitude low-
pressure systems is quite accurately reproduced (Johns et al.,
1997) in both DJF and JJA seasons. The main systematic er-
ror is high pressure at high latitudes for most of the year, that
affects both the Poles and the Icelandic low in the Northern
Hemisphere. Associated with these biases, easterly biases
are present in the surface winds (Pope et al., 2000). The rel-
atively weak Icelandic low and Azores high are responsible
for weak SLP gradient over western and northern Europe in
DJF (Osborn, 2002), indicating insufficient propagation of
storms into this region (Johns et al., 1997). Although there
is good agreement between the model and observed areas of
maximum high frequency variability or storm tracks in the
North Pacific and Atlantic, the model variability is, however,
too weak in the Northern Hemisphere in DJF and the storm
tracks are displaced south and west of their observed posi-
tion (Johns et al., 1997). The northward displacement of the
storm track in JJA is realistically simulated in the Pacific but
is too small in the Atlantic and the variability remains slightly
lower than suggested by the analysis.

In conclusion, with respect to the DJF sea level pressure
(SLP) climatology over Europe (Basnett and Parker, 1997;
Jones et al., 1999), the large scale features are reasonably
simulated by all these models, although their absolute values
are sometimes in error (Osborn, 2002). The leading mode
of the Atlantic-sector interannual variability, defined by the
leading empirical orthogonal function (EOF) of SLP from
each model, is the NAO in all cases. Projecting the ob-
served SLP onto the simulated EOF’s results in time series
that closely match those of the observed leading EOF’s, indi-
cating that biases in the simulated SLP patterns are relatively
unimportant.

4http://www-pcmdi.llnl.gov

Another approach to validate the different GCM’s is to
consider the downscaled precipitation observed during the
CTR and compare its average value and standard deviation
with the actual values reported in the CRU data for the pe-
riod 1961–1990.

In Figures5, 6, 7, and8 also the mean and standard devia-
tion of CRU precipitation together with the downscaled pro-
jections obtained from the GCM SLP is reported. For some
runs the difference is significant (especially for the Canadian
GCM) while the model HadCM3 (Hadley) model seems to
capture in most cases both the average precipitation and the
variance. Intermediate results are obtained by means of Csiro
model.

4.2 Climate projections

The results of downscaling using SLP as predictor can be
summarized as follows:

– Apulia: a progressive increase in Summer precipitation
is observed for both SRES (note that no model is able
to reproduce the large standard deviation of CRU data
in Summer); the change is significant for all models
in period III. No change occurs in Winter for both A2
and B2 SRES; the projections are substantially constant
in Spring (only Canadian GCM for A2 SRES suggests
a decrease); in Autumn Hadley Center and Canadian
models indicate a significant increase of precipitation,
while Csiro suggests a constant value.

– Ebro river basin: a large and significant reduction of
Summer precipitation (up to 50%) is projected by all
models and for all SRES; this change is already signif-
icant in period I for all the models with the B2 SRES.
In Autumn only Csiro model suggests a decrease with
both scenarios. Winter precipitation generally remains
constant. In Spring the Hadley center model suggests
an increase in period II and a decrease in III, which is
partially confirmed by Canadian model.

– Po valley: Autumn and Spring precipitation decrease
for practically all SRES and models already in period I.
In Winter the precipitation remains constant while Sum-
mer precipitation behaves differently depending on the
model and scenario that are considered. However, the
Canadian model, which better reproduces the CRU data
in this area, suggests a constant value.

– Antalya province: We observe for Summer and Autumn
precipitation an increase for all models and SRES. Dur-
ing Winter and Spring the precipitation remains con-
stant for most of the SRES. However, in this area the
computed Summer precipitation change is not convinc-
ing, because the validation of the downscaling tech-
nique gives unsatisfactory results (see Table 1).
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A quite common feature of all results is that B2 projections
are qualitatively similar to A2 ones except that, comparing
the control run with the last of the 30-year periods, they gen-
erally present a lower change, that is particularly clear in JJA,
while the differences are smaller in DJF. This is not surpris-
ing considering that in B2 SRES emissions are lower than in
A2.

As previously stated, for Apulia region we also used T500
as predictor for JJA precipitation. Figure9 shows the com-
parison between the projections obtained using the SLP and
the T500 fields of the Hadley Centre GCM for the A2 SRES.
The quantitative comparison between the two predictors is
affected by the different length of the time series: the T500
time series is only 44 years long while SLP is 102 years long,
and it covers the period 1901–2002. Anyway we perform the
same validation procedure using T500 as predictor dividing
the 44 year long series in two halves. For comparison we per-
form the validation using SLP as predictor only for the period
covered by T500 series (notice that this time also SLP series
is only 44 years long). We obtain an average error of 88%
with T500 and 98% with SLP. It must be noted that these
high values are due to the shortness of the series; however it
is relevant that T500 leads to results comparable with SLP.

From a qualitative point of view the two predictors lead to
similar increasing trends and in phase oscillations, although
the changes predicted using T500 as predictor are larger.
A similar agreement between the results obtained with the
SLP and T500 is not present in other areas. However, the
results obtained for JJA Apulia Summer precipitation with
T500 are reasonable, because the computed canonical pat-
terns are easily interpretable from a meteorological point of
view (i.e. cold air advection from the north-east associated
with an higher pressure over northern Europe), as shown in
Fig. 4.

Finally, it is possible that the scenario circulation changes
in such a way that the Summer precipitation will be deter-
mined more extensively by synoptic systems than by local
convective events (of which T500 anomaly is an indicator).
For these reasons, the results obtained using T500 as predic-
tor should be considered cautiously.

5 Conclusions

In this paper we have compared two slightly different ver-
sion of CCA for the statistical downscaling of regional pre-
cipitation. Between these methods, we have selected CCA
after PCA filtering on both predictor (SLP) and predictand
(seasonal precipitation). We have shown that this method is
generally reliable for downscaling of seasonal precipitation
in four areas of agricultural interest in the Mediterranean re-
gion: Apulia region, Ebro river basin, Po valley and Antalya
province. The main exception is Summer precipitation for
Antalya province, where results are unsatisfactory (the rela-
tive error is 72%).
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The strong reduction of Summer precipitation over the
Ebro river basin appears clear. This is related to the stabil-
ity of the downscaling procedure (mainly due to geographi-
cal and large scale circulation features) and to the agreement
with the results of dynamical downscaling techniques (Giorgi
et al., 2004a,b).

We obtain a significant increase for Apulia Summer pre-
cipitation. This increase is confirmed changing the predictor
from SLP to T500, but it partially contrasts with the results
of dynamical downscaling.

The fact that in large part of the Mediterranean basin Sum-
mer precipitation is very small, and the presence of strong
uncertainties in the statistical relationship as well as in the
models suggest to consider the predicted increase in Summer
precipitation cautiously. Other results should be confirmed
by further investigations. The decrease of precipitation in the
Po valley both in Spring and Autumn contrasts with dynam-
ical downscaling results. The increase of precipitation in the
Antalya province both in Summer and especially in Autumn
is very strong and common to all considered GCM’s, but the
large error of the method for this area, especially in Summer,
reduces the confidence on these results.

In general, this study suggests smaller projected climate
changes, or even sometimes with opposite sign, with re-
spect to most dynamical models, both global (Giorgi and
Lionello, 2008) and regional. In fact, as shown by the re-
sults of the PRUDENCE project (Déqúe et al., 2005), also
regional models agree on the Summer drying in Mediter-
ranean sub-regions. However, the small increase of Winter
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precipitation over the Iberian Peninsula in PRUDENCE
(which is in contrast with most global simulations) is in
substantial agreement with the results of this statistical down-
scaling. Eastern Mediterranean and Middle East are outside
the common area of the PRUDENCE project. Considering
global projections, the southern coast of Turkey in Summer is
close to a transitional area between contrasting future condi-
tions, which in the central Mediterranean region are drier and
in the Middle East are wetter than the present ones. There is
no surprise that in presence of such complicated morpholog-
ical features a regional downscaling may produce different
results with respect to the global models.

Finally, the results of this study are based on SLP and
500 hPa temperature.Rowell and Jones(2006) suggested,
in the projected climate scenarios, that dry Summer in the
Mediterranean are mainly due to low Spring soil moisture
conditions leading to reduced Summer convection and to
large land-sea contrast in warming leading to reduced rel-
ative humidity and precipitation over the continent. These
factors are not accounted for by the downscaling techniques
used in our approach and this may explain the differences
with respect to the results of the dynamical models.

This study confirms the potential effectiveness of statisti-
cal downscaling methods. It also shows that climate change
projections of precipitation differ among the considered ar-
eas confirming the need for downscaling techniques capable
to resolve internal differences in the Mediterranean region.
According to this paper the widespread reduction of precipi-
tation in the Mediterranean region needs further investigation
to be confirmed. Projecting drier conditions for the whole
Mediterranean area is likely correct at broad basin scale, but
should not be generalized for small areas, especially close
to its border, where the downscaling exercise of this study
shows the potential for different climate change signals and
where specific studies are needed.

The present research is the first step in order to better un-
derstand the impact of climate change on agricultural sys-
tems typical of Mediterranean region. A forthcoming paper
will cover more directly the impact of these changes on crop
growth.

Appendix A

The Canonical Correlation Analysis

In this section we briefly review the statistical technique used
in this paper. The notation is the same asvon Storch and
Zwiers(1999). CCA searches couples of patterns, the canon-
ical conjugated patterns, or briefly canonical patterns (CP),
made up of a vector for the predictorfx and another for the
predictandfy . We defined the canonical conjugated

coordinates (CCC’s),βx(t) andβy(t), as

βx(t) =

∑
k

Xk(t)fx,k ≡ 〈X(t),fx〉, (A1)

βy(t) = 〈Y (t),fy〉,

where 〈〉 denotes the (spatial) scalar product between two
vectors andX(t), Y (t) are the vectors of predictor and pre-
dictand at timet , respectively. It is important to note that
CCA must be applied to the difference between real observa-
tions and their time averaged valuēX andȲ , thusX(t) and
Y (t) are connected to the observed values of predictorX (t)

and predictandY(t) according to

X(t) = X (t)− 1
τ

τ∑
t=1
X (t) =X (t)− X̄

Y (t) = Y(t)− 1
τ

τ∑
t=1
Y(t) =Y(t)− Ȳ .

(A2)

CCA looks forfx andfy that maximize the correlation

ρxy =
(
βx(t),βy(t)

)
≡

1

τ

τ∑
t=1

βx(t)βy(t) (A3)

under the constraint that

Var(βx(t)) = Var
(
βy(t)

)
= 1 (A4)

with Var denoting the time variance andτ the total number
of measurements in time. It can be proven (von Storch and
Zwiers, 1999) that the CP’s are the solution of an eigenvalue
problem with the eigenvalue equal to the square of the corre-
lationρxy betweenβx(t) andβy(t).

The CCA technique is applied in several statistical prob-
lems. To perform statistical downscaling we use this tech-
nique to derive from a large scale field (e.g. SLP) – the pre-
dictor – a regional scale field (e.g. precipitation) – the pre-
dictand – which is not adequately described in climatic pro-
jections of GCM’s. To obtain the downscaled value of the
predictand we first calculate the difference between the cli-
matic projection of the predictor̃X (t) and the time averaged
value of observed predictor, according to

X̃(t) = X̃ (t)− X̄ . (A5)

Then we expand̃X(t) on a suitable numberk of CP’s,

X̃(t) '

k∑
i=1

β̃(i)
x (t)F (i)

x (A6)

where

β̃(i)
x (t) = 〈X̃,f (i)

x 〉, (A7)

F
(i)
x,y are the adjoint off (i)

x,y fulfilling

F (i)
x = 6xxf

(i)
x , F (i)

y = 6yyf
(i)
y , (A8)
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where

6xx,kj =
1

τ

τ∑
t=1

Xk(t)Xj (t) (A9)

6yy,kj =
1

τ

τ∑
t=1

Y k(t)Y j (t).

F
(i)
x (F (i)

y ) represents the value of variableX(t) (Y (t)) when

the CCCβ
(i)
x = 1 (β

(i)
y = 1). The downscaled variables̃Y(t)

is obtained with the expansion

Ỹ(t) ' Ȳ+

k∑
i=1

β̃i
x(t)ρ

i
xyF

i
y . (A10)

where, as before,̄Y is the time averaged value of observed
predictands. There is no strict criterium for choosing the
suitable number of patternsk in the expansions (A6), (A10)
(von Storch and Zwiers, 1999). Here only those patterns with
eigenvalues significantly different from the lower ones have
been retained.

This statistical model is based on the hypothesis that linear
correlationρ

(i)
xy between different CCC’s, is valid also in the

scenario provided by the runs of the GCM.
Very often CCA technique is not applied directly but on a

previously filtered dataset. The filtering is performed using
the Principal Component Analysis in order to eliminate small
scale noise from predictors, predictands or both.

Another important technical detail in statistical downscal-
ing is the algorithm needed to project GCM projections on
Canonical Correlation Pattern. Indeed it is necessary to
interpolate the data from the GCM grid to the predictor one.
In our cases the two grids have comparable resolution so we
use a quite simple method. For each point of predictor grid
of coordinates(xp,yp) we choose the 4 nearest points of the
GCM grid. These points are the vertices of a rectangle with
coordinates(xi,yi) i=1, 2, 3, 4. We thus obtain the values of
a fieldf (x,y) in (xp,yp) with a bilinear form given by

f (xp,yp) = f11+
xp−x1
x2−x1

(f21−f11)+
yp−y1
y2−y1

(f12−f11)

+

(
yp−y1
y2−y1

)(
xp−x1
x2−x1

)
(f22−f12−f21+f11)

(A11)

wherefij = f (xi,yj ).
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