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Abstract. Surface hoar size and location relate directly to
avalanche initiation trigger points, and they do so in small-
scale spatial distributions. Physically, surface hoar will grow
where the snow surface is cold relative to the air and water
vapour is plentiful. Vapour aside, snow cools at night pri-
marily by longwave radiation emittance. Emittance can be
restricted by clouds, trees, and terrain features. With 96 inde-
pendent spatial point samples of surface hoar size, we show
the extreme small-scale size variation that trees can create,
ranging from 0 to 14 mm in an area of 402 m2. We relate this
size variation to the effects of trees by using satellite pho-
tography to estimate the amount that trees impinge on sky
view for each point. Though physically related to longwave
escape, radiation balance can be as difficult to estimate as
surface hoar size itself. Thus, we estimate point surface hoar
size by expected maximum areal crystal size and dry terrain
greyscale value only. We confirm this relation by using it
at a different area and in a different formation cycle. There,
its overall average error was 1.5 mm for an area with surface
hoar sizes ranging from 0 to 7 mm.

1 Introduction

Surface hoar crystals grow on the surface of snow from di-
rect deposition of water vapor. The crystals, once formed and
buried under additional snow load, form a persistent and brit-
tle weak layer (McClung and Schaerer, 2006) with a distinct
ability to propagate fractures within the snowpack and thus
release avalanches.

As the surface hoar crystals collapse and slide in layer fail-
ure, the size of the crystals themselves may contribute to in-
creased potential energy release and increased propagation
of layer failure (Jamieson and Schweizer, 2000; Heierli et al.,
2008). In addition, larger crystals maintain an unstable sepa-
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ration between slab and bed surface longer during the process
of settlement and bonding (Jamieson and Schweizer, 2000).

In other words, an ability to predict where surface hoar
crystals form and whether they are large or small would
directly help predict and clarify where skiers may trigger
slabs overlying a surface hoar layer. The scale of interest
for such predictions lies at the skier scale, that is, at a small
enough scale where we may say something useful about trig-
ger points.

This paper focuses on thewhererather than thewhenof
surface hoar – often, avalanche forecasting operations have a
good idea about whether or not surface hoar has formed, but
desire additional information about the spatial distribution of
the layer. Here, we examine the size of surface hoar crystals
over small areas in sparse forests.

Besides being common skiing terrain in North America,
trees provide control for many environment variables. Sparse
forests offer protection from high winds, and they create ex-
treme variation in net snow surface longwave radiation es-
cape. Thus, such areas are known for being protected enough
to grow surface hoar, but variable enough to not grow it ho-
mogeneously. Logging cuts serve as a prime example (Mc-
Clung and Schaerer, 2006). In addition, understanding the
variation of surface hoar in sparse forests has direct useful
value: between 1984 and 1996, of the 13 fatal avalanches that
released on buried surface hoar for which vegetative area is
known, six of them happened at treeline or below (Jamieson
and Geldsetzer, 1996).

Physically, we expect that the size of surface hoar can
be directly and spatially correlated with sky view, a mea-
sure of how much atmospheric view and exposure a point on
the snow surface has, and through which it may emit long-
wave radiation. In forests, close trees over a point on the
ground decrease sky view, whereas widely spaced trees in-
crease it. As sky view is difficult to measure point-by-point
over large areas (Brown et al., 2001), we approximate it by
using greyscale values in dry land satellite photography –
where darker pixels correspond to trees.
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We begin with an overview of previous studies of physical
parameters in surface hoar formation. Our methods, includ-
ing use of land imagery, follow. Then, we present options for
analysis: as this study is the first to attempt spatial surface
hoar size predictionwithoutaccompanying weather data, we
show the avenues that led us to use satellite photography. Fi-
nally, we present our empirical model, its validation, and a
summary and outlook.

2 Previous work

Whereas previous studies have linked surface hoar growth
to bulk transfer of water vapour, few have examined net
longwave radiation effects and none have done so in a two-
dimensional spatial setting at the skier scale.

Many factors affect surface hoar growth, from wind
(Hachikubo and Akitaya, 1997; Hachikubo, 2001; Föhn,
2001), to radiation balance (Cooperstein, 2008), to air-snow
temperature gradients (Lang et al., 1984; Hachikubo and Ak-
itaya, 1997), to humidity (Feick et al., 2007). At the most
simple physics level, one might say surface hoar grows when
we have cold ice, warm air, and lots of water vapour. How-
ever, some factors affect growth both positively and nega-
tively. Clouds, for example, supply vapour but reduce effec-
tive longwave radiation escape (Colbeck et al., 2008).

Surface hoar needs a substantial amount of water vapour.
This explains the success of bulk transfer models (Colbeck,
1988; Hachikubo and Akitaya, 1997; Höller, 1998; Föhn,
2001; Lehning et al., 2002): wind can provide moisture to
the snow surface via bulk transfer. However, humidity does
not always serve as the main determining factor. Previous
work showed similar air temperatures and relative humidity
both within and out of forests (Höller, 1998), but we observe
high surface hoar size variance within forests. So, if air tem-
perature and vapour presence do not change spatially within
sparse forests, the remaining varying factors should be wind
– or bulk transfer capacity – and longwave radiation escape.

Wind presents its own particular set of challenges. Some
studies found light wind to be beneficial to surface hoar
growth (Föhn, 2001; Hachikubo and Akitaya, 1997; Colbeck,
1988). Yet, there are recorded examples of wind (with rela-
tive humidity close to that of vapour pressure over ice) subli-
mating ice rather than depositing vapour upon it (Hachikubo,
2001; Feick et al., 2007). In addition, the physical neces-
sity of wind in the deposition process itself remains unre-
solved, with conflicting opinions inLang (1985) compared
with Hachikubo and Akitaya(1997) andFöhn(2001). At the
very least, high (>3 m s−1) wind speeds at the snow surface
will affect the shape of deposition into something other than
surface hoar (Cheng and Shiu, 2002), and low wind speeds
will present large barriers to bulk transfer of adequate vapour.

Wind affects both major factors in surface hoar growth –
temperatures and vapour – and it does so in a currently un-
modellable spatial fashion at useful scales (Hägeli and Mc-

Clung, 2000; Campbell et al., 2004). For this reason, most
of the studies mentioned above involve measurement points
only very near weather stations or other monitoring equip-
ment such as radiometers. Here, then, we have come to
an apparent impasse: our best mechanisms for estimating
surface hoar size require accurate wind and humidity mea-
surements, and neither may be predictively mapped, spa-
tially, within a 402 m2 area. Thus, for this first spatial predic-
tive effort, we chose an environment that controls the vari-
ance of both.

This leaves the option for a spatial study on the variance in
effective longwave radiation escape. Longwave radiation ef-
fects have already been studied in relation to surface hoar
growth by aspect (Cooperstein, 2008) and integrated with
bulk transfer-based estimates for better predictions in open
areas (Lehning et al., 2002).

An excellent location to study these longwave effects is
in sparse forests. Trees block sky view for a point on the
ground. Trees are detectable – individually – over large areas
using modern basic satellite photography. Trees are usually
stationary over long time scales, have high emissivity (which
makes them quite good at re-radiating longwave escape from
snow), and vary spatially on scales that humans can access,
measure, and visualize. Furthermore, trees offer the condi-
tions desired here – that is, protection from high winds.

Finding a clarifying situation, such as sparse forests, with
which to study sky view and longwave blockage effects can
be quite helpful. The self-compounding nature of physical
factors involved in surface hoar growth – as well as their
small-scale variability at any give point – have put up great
obstacles to studying surface hoar growth by point sampling
sparsely over a large area (Feick et al., 2007). Also because
of this, very few studies have tried to map the variance of
these effects over terrain, and none – until now – have at-
tempted spatial prediction.

3 Methods and data

This paper contains two types of field measurements: surface
hoar crystal sizes and snow surface point temperatures. We
also compare these field data to satellite images to obtain a
measure of closeness to trees. The methods for both obtain-
ing the data and correlating the data and images are presented
here. In our methods, we sought to:

– Provide a reasonable estimate of surface hoar crystal
size variation over terrain at the skier scale.

– Utilize only information easily available to the practi-
tioner: i.e., single point samples of surface hoar size
and basic dry land satellite photography.

In other words, we intentionally present a method to estimate
spatial distribution which uses limited input, few necessary
resources, and no field instrumentation.
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3.1 Field method and data

In our area of operation in the Columbia Mountains, Canada,
we point-sampled surface hoar sizes during the surface hoar
formation periods between 16 January to 22 January, and
17 February to 20 February, 2009.

We spatially distributed the point samples using the Star
sampling method (Shea and Jamieson, 2010). This ensured
randomized spacing between points and snow surface preser-
vation between sampling days. The random placement of
points prevented the operator’s preference from being influ-
enced by terrain and other attributes of the area. In addition,
the method allowed random spacing between analysis points;
such randomness generally improves the robustness of spa-
tial analyses later done with that data (Kronholm and Birke-
land, 2007). The slope preservation enabled by Star’s layout
allowed us to measure the change in surface hoar size at the
same locations from day to day.

Sample point distance separation ranged randomly from
10 cm to the full width of a sample area. Each sample area
contained 48 crystal size samples and covered approximately
40×40 m of terrain. Due to the fractal nature of snow (Deems
et al., 2006), we chose our extent carefully to be one that
could capture the scale of skier triggering.

At each point, we recorded the minimum and maximum
size of surface hoar crystal found there, which we later av-
eraged into a mean size for that point. We noted a size of
0 mm only if no crystals were found. The same points were
sampled repeatedly on consecutive days during the January
cycle.

The efficiency of the sampling design allowed us to obtain
more spatial points than any previous surface hoar study. In
short, 96 spatially separate and semi-random points were ob-
tained in the January cycle, and each point was visited three
times over four days. In the February cycle, 48 spatially sep-
arate points were obtained, and they were each visited once.

The two sample areas in January, from which we devel-
oped the relation with vegetative greyscale in terrain imagery,
need be distinguished. We will call them Area I (primarily
north facing) and Area II (primarily northeast facing). Both
lie at an elevation of 1900 m, with generally horizontal orien-
tation but containing small slopes up to 25 degrees of incline.
Neither sample area had dense forest, and neither was en-
tirely open, although Area II had more open area than Area I.
One can see a photo of the general terrain in Fig.1. Each
contained a mix of trees and rolling terrain, which meant any
immediate obstructions to sky view were of a smaller size
than the sample area.

The one sample area in February, which we used to con-
firm the relation with greyscale, is located at a different loca-
tion (150 km to the northwest), and a different aspect (south
facing). The attributes of the area were similar to Areas I
and II in all but aspect, that is, a mix of trees and small ter-
rain features.

Fig. 1. Photo of a portion of Area I. Notice the ski tracks across the
area for scale. This area is quite sheltered from wind. Also, during
the January surface hoar cycle, the winds in the area ranged from
only 1 to 12 km h−1.

3.2 Temperatures

For our temperature measurements, we measured the surface
temperature of the snow at each point with two different
infrared thermometers – a Thermohawk 400 hemispherical
1:1 thermometer used at 1 m above the surface, and a Testo
825-T4 3:1 thermometer used at 30 cm above the surface.
This occurred only for the last January cycle day, for both
Areas I and II. As both measurements had similar results,
we present the downward facing measurements from 30 cm
above the snow surface. What we callpoint snow surface
temperatures, then, are effectively 10-cm diameter averaged
snow surface temperatures.

3.3 Imagery

Satellite photos of Areas I and II appear in Fig.2b and d, with
the blurry dark areas corresponding to trees. We obtained our
land cover imagery from Google Earth. Individual trees can
be distinguished; for freely available data, these photographs
are quite good. The images exhibit no snow on the ground or
trees; we use them only for greyscale values to estimate sky
view. The trees are primarily conifers, which can provide
dependable greyscale shading distinctness.

From a screenshot of the satellite image overlain on
Google Earth terrain, we extracted the terrain-projected
(warped) image area corresponding to each of the two sam-
pled areas. We then used cubic interpolation to scale the pro-
jected areas back into flat rectangular form. No other im-
age modifications besides a projection to a flat rectangular
surface occurred. Area II required more interpolation than
Area I to make it rectangular, with approximately 25 degrees
of stretch in the lower right hand corner, and smaller adjust-
ments in the other corners.

www.nat-hazards-earth-syst-sci.net/10/1317/2010/ Nat. Hazards Earth Syst. Sci., 10, 1317–1330, 2010
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Fig. 2. Visual overview of the two sample areas.(a) IDW map of mean crystal sizes for one day at the Area I location,(b) satellite image
corresponding to Area I.(c) IDW map of mean crystal sizes for one day at the Area II location,(d) satellite image corresponding to Area II.
For (a) and (c), black dots indicate the actual physical sample locations. For (b) and (d), images are provided under the Google Earth terms
of use, copyright 2009 TeleAtlas, 2009 British Columbia, and 2007 Google Earth.

Each Star sample area of approximately 40 m×40 m trans-
lated to a satellite image with about 10 pixels per 1 m resolu-
tion. However, this includes pixels generated by cubic inter-
polation when re-projecting the image to a rectangular form.

Greyscale shading in our photographs comes primarily
from trees, less so from rocks and terrain rolls, and nearly
nothing from steep slopes or aspect within a given small
area. This gives a clean, qualitative link to sky view: ar-
eas of lighter grey in a small area generally have more, and
areas of darker grey within a small area generally have less.

3.4 Mapping

To make visual maps of the crystal size and surface temper-
ature measurements shown in this paper, we created a con-
tinuous image of probable values from our real-world point

measurements. This step is simply to make it easier to visu-
ally comprehend the measurements; all data points involved
in calculations in this paper are only those actually physically
measured in the field.

To produce these visual maps, we used the standard in-
verse distance weighting (IDW) algorithm. IDW weights
the values of closer known points more heavily than further
known points, where the weightw of each known points
with distanced from the point we wish to predict gets in-
cluded in the average with a weightw(d)=d−2. We used
IDW to calculate size and temperature values at all loca-
tions on a 1×10−5 spaced latitude and longitude WGS84 grid
(Pebesma and Wesseling, 1998). Two such example maps
can be seen in Fig.2a and c.
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3.5 Determining position

We determined the latitude and longitude of the sampled
point locations using the following information:

– Between 600 and 1400 GPS reference points per visit to
each sample area.

– Pacing each transect of sample points (Star consists of
six transects) using pace length and various measuring
devices.

– Recording reference information in addition to crystal
size at each point, including patchiness of surface hoar
crystals at each point, which was used for correct day-
to-day ordering of points.

These independent sets of information essentially served
as checks to assess the accuracy we could obtain from any
one of the measurement methods. Our base fitting method
consisted of a custom-designed GIS fit program, which de-
termined the position of each sample location by closest fit
from the average of thousands of compiled track points.

We estimate that our total cumulative error per 8-point
transect line with GPS and pacing error combined (and prac-
tically inseparable) ranged between 1 m and 5 m depending
on the sample. We used a relatively accurate recreational
handheld GPS unit to let us not only move quickly while
sampling, but also to demonstrate that such a device can pro-
vide position for the field measurements needed for others to
use the method outlined in this paper.

When determining position on the satellite photography,
we moved the coordinates of Area II, as a unit, seven meters
to the south. This occurred due to visual match up of tree
location values recorded in the field with what we observed
on the Google Earth imagery. This shift was most probably
needed because of the different tilt of the trees in the satellite
photograph, creating longer shadows in the image. Area I
required no translation, and we did not perform any transla-
tion on the sample from 19 February 2009 to let it serve as
an evaluative dataset.

4 Options for analysis

Where weather data is concerned, many-point spatial stud-
ies face a choice of challenge. They may use measurement
equipment at every point, which can be expensive and time
consuming. Or, they may model and extrapolate values from
nearby measurement equipment, which can result in loss of
accuracy.

With our intent to develop a model which uses readily
available inputs, we discovered that, in our data, crystal size
generally scales with satellite photography greyscale. This
is not to say that greyscale scaling willalwayswork. Rather,
we show here that it worked in our conditions, which we con-
sider to be typical of sparse forests. Furthermore, the use of
greyscale shows that other, non-weather data may be used to

creatively augment, improve, or even provide estimates. We
did not arrive at such a solution immediately, and the follow-
ing subsections outline our process.

4.1 Variograms

As an exploratory method for discovering spatial structure
and process scales, the variogram (Cressie, 1993) currently
has no peer. Conservatively, one may determine the process
scales for a given process and area, and then return to that
area and scale a sampling method to capture that process on
its scale of operation as accurately as possible. Oftentimes,
however, one does not have that luxury as snow sampling
can be destructive and the desired conditions last only a short
time.

We could not re-scale our sample without further destruc-
tion to the slope. However, as we could return from day
to day, we could find variograms both for one day and for
change across multiple days. Searches for both isotropic and
anisotropic spatial correlation in the single-day surface hoar
size sets did not reveal any obvious patterns. However, the
multi-day variograms had more defined ranges, as these dis-
till the data down to only the processes which change crystal
size after formation. Even these variogram ranges were non-
definite. Figure3 shows two such variograms.

The variable and weak nature of these variograms revealed
two issues with the analytical use of the variogram here.
First, the process scale does not necessarily stay constant
from day to day, or area to area. As we can see in Fig.3,
even the weak ranges vary for the same analysis from day to
day. One may intuit that trying to chase a constantly vary-
ing set of process scales would be quite time consuming, and
would also be quite spatially consuming when the sampling
involved is a destructive process.

Second, the type of sampling method and the scaling of
that sampling method greatly affect the outcome of a vari-
ogram. Due to the fractal nature of some snow measurements
(Deems et al., 2006), a sampling method with points that os-
cillate with the process scale can greatly affect the outcome,
and even pick up and mix up ranges of unexpected interre-
lated processes.

We cannot know whether either of the above issues caused
the lack of good variogram results. However, our sampling
method evaluation (Shea and Jamieson, 2010) and close mea-
surement point spacing give weight to the variogram not be-
ing useful in these conditions. Furthermore, a variogram can-
not help one spatially predict any value, unless the process
creating the range can be very precisely mapped over the de-
sired area.

4.2 Surface temperature

We also assessed the physical processes. We measured
surface temperatures, since surface hoar grows on ice when
it is cold relative to the air (Lang et al., 1984; Hachikubo
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Fig. 3. Two examples of size-difference semi-variograms with
weakly defined ranges.(a) Overnight size change from 16 to 17 Ja-
nuary, Area II.(b) Overnight size change from 17 to 18 January,
Area I.

and Akitaya, 1997). At the end of the January formation cy-
cle, we took a nighttime point surface temperature (04:00–
06:00 local time, LT) and daytime point surface temperature
(10:00–12:00 LT) at every one of the 96 spatial points in Ar-
eas I and II. We show crossplots of surface temperature ver-
sus crystal size in Fig.4.

The correlation between nighttime surface temperature
and crystal size ranged fromr=−0.64 to −0.74, both
p<0.001. The correlation between daytime surface temper-
ature and crystal size ranged fromr=−0.39 (p=0.03) to
r=−0.31 (p=0.06). This supports the findings ofCooper-
stein(2008): a single temporal measurement of the effects of
daytime shortwave matters less than the overall sum of short-
wave, which a night of longwave escape must then overcome.
However, this result does not necessarily help with size pre-
diction, for the following reasons.

First, the process of directly predicting such point temper-
atures at small scales over terrain would be very complicated.
Though current work has begun to tackle this very problem

(Morstad et al., 2007), much work remains. The magnitude
of those efforts should demonstrate the complexity of build-
ing and verifying a usable physical predictive model for tem-
peratures alone, much less for surface hoar size.

One also may think to use trees via greyscale to predict the
more physical variable of surface temperature, and then use
the temperature predictions to estimate size. However, the
relationship between distance from trees and point surface
temperature do not necessarily correlate. For example, dur-
ing the day, open and non-treed snow absorbs more incoming
shortwave radiation, and thus must emit all of that radiation
and more at night to achieve the same surface temperature.
Snow close to trees, on the other hand, gains some protection
from incoming shortwave during the day. From only these
effects, larger surface hoar would grow within trees, which
we do not observe in practice.

The more dominant effect of trees on nearby snow is prob-
ably a reduced ability for the snow to effectively vent heat via
longwave radiation escape at night due to tree blockage and
re-radiance. Trees also can create canopies which keep the
air warm by buffering it from temperature changes (Sicart
et al., 2004), an important factor in near-surface tempera-
ture gradients but not accounted for by surface temperatures
alone.

Even if we were to be able to estimate point surface tem-
peratures at small scales over terrain, the strong size corre-
lation solelywith nighttime temperatures indicates that a ra-
diation balance estimate would need to not only be accurate
in space, but also quite accurate in time, compounding the
difficulty. One may examine the spatial IDW maps of the
changein surface temperatures from night to day in Fig.5.
Even during the daytime, some areas cooled and some ar-
eas warmed in a complex interplay of shadows and radiation
balance. The most noticeable surface warming actually oc-
curred at shaded points within the trees, as one may see by
comparing the temperature plots in Fig.5 with their corre-
sponding images in Fig.2.

Furthermore, this sets aside the issue that surface temper-
atures account for only part of the variance in size, as most
natural variables do. Estimating temporal surface tempera-
tures at such small scales with all of the complexity men-
tioned above presents a great deal of difficulty for the predic-
tive benefit of only one variable. So, we sought an empirical
approach.

4.3 Greyscale

Trees affect skyview – which in turn influences diurnal
surface temperature changes – and trees also affect air tem-
peratures, wind, and so on. They capture the effects of many
variables in one physical construct. Due to surface hoar need-
ing efficient longwave radiation cooling, we expect that, all
other things being equal, surface hoar will be smaller near
trees and larger in open clearings.
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Fig. 4. Cross plots of point snow surface temperatures versus mean surface hoar crystal size found at each point during both night and day.
(a) Night, Area I. Pearson correlationr=−0.74, p<0.001. (b) Night, Area II. Pearson correlationr=−0.64, p<0.001. (c) Day, Area I.
Pearson correlationr=−0.39,p=0.03. (d) Day, Area II. Pearson correlationr=−0.31,p=0.06.

Fig. 5. Inverse-distance weighted plot of temperaturechangefrom night (approximately 05:00 LT) to day (approximately 11:00 LT) on 21
January 2009. Black dots indicate the locations of the actual sample points.(a) Area I. (b) Area II.
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Fig. 6. Pearson’s correlation coefficient variation by radius of satellite image pixels included in a point averaged greyscale value. Each
correlation coefficient shown comes from the 48 points per given day. The values for grey40 correlation lie at x = 41. (a) Area I. All
correlations have significancep<0.05. (b) Area II. All correlations except the three points furthest left on each line have significance
p<0.05.

To verify this empirical relation, we used the greyscale
values of dry land satellite photography. The point crystal
size measurements and corresponding satellite imagery for
the two January formation cycle areas are shown in Fig.2.
We expect that a single pixel on the satellite photo, due to
noise and extreme sensitivity to local effects, will have poor
correlation to a single crystal point measurement. Rather, for
purposes of both reducing the effects of noise and accounting
for a finite area around a geographical point, we averaged a
given radius of greyscale pixels.

To find the best such radius, we constructed eighty differ-
ent greyscale point sets, each containing one pixel value per
measurement point, and each corresponding to a different ra-
dius – one to eighty – in linearly averaged greyscale pixels.
For a radius of 10 pixels, for example, we averaged the block
of 21 by 21 pixels surrounding the sample point to produce
our averaged point greyscale value. This occurred indepen-
dently of nearby or overlapping sample radii. We then com-
pared the correlation between the mean surface hoar size at
each measurement point and the averaged greyscale values
within a given radius in the satellite image at that point. The
fluctuations in correlation values by radius can be seen in
Fig. 6.

Qualitatively, one may think of this as the area of effect
that trees might have on a surface hoar crystal or, inversely, as
an empirical measure of sky view. In Fig.6, one can see that
an obvious maximum exists on some days but not always,
and the maximums do not always occur at the same radius
value.

Our choice of radius was the maximization of correla-
tion over the six days, which lies at approximately 40 pixels.
Though this general maximum is obviously not individually
true for 20 January 2009, 40 pixels gives us an easy to use

and easy to generate value which has reasonable correlation.
Compared to the effort of predicting spatial surface temper-
atures, for example, this radius-of-tree-effect variable gives
straightforward values. The 40 pixel radius corresponds to
an 81 pixel diameter, or an area with a radius of about four
meters on the imagery used here. We call this averaged
greyscale value over a 40-pixel radius grey40.

The potential drawbacks to this method are also readily
apparent. In open areas, where this qualitative relation be-
tween skyview and greyscale variation does not hold, this ra-
dius of effect also would not hold. However, for the purpose
of sparse forests, it cleanly isolates the amount of tree cover
around a point and has good correlation to surface hoar size.

4.4 Regression

Having found an easily and spatially obtainable value –
grey40 – we wish to use it to do something spatially useful.
We first constructed six different linear models using basic
linear regression with unit least squares and utilizing R (R
Development Core Team, 2006). These six models corre-
spond to using grey40 as the independent variable on each of
the three sample days and two areas. We captured the slope
a and interceptb of each linear regression model.

The impracticality of using an ideal day as a model for
other days became readily apparent. The slope and intercepts
of each of the six models varied at least partially because
the average maximum surface hoar size for each sample area
varied (14.7 mm for Area I, and 12.5 mm for Area II). De-
termining which of these maximum sizes represented the
ideal could not be easily done. In addition, some days ap-
peared to have a more curved (exponential) relationship with
greyscale, whereas the overall relationship with greyscale
was linear.
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Further, the range of grey40 varied (0.177 for Area I, 0.156
for Area II), as did the other averaged grey point values. Even
when slopes and intercepts were scaled by maximum crystal
size and grey40, the slopes of greyscale luminosity versus
crystal size varied from 26.23 to 69.49. Regression over the
whole 288 point dataset and individual areas fared somewhat
better, with the standard deviations of the residuals just over
3 mm.

Regression depends very strongly upon each individual
smaller dataset being affected by the independent variable
in the same numerical way. For example, if trees affect crys-
tal size very strongly one day and less strongly the next, re-
gression across the two datasets would average the effect and
potentially produce an non-useful result. Conversely, regres-
sion can overfit to the effect of a single day and area. We see
that here: even with a generally good relationship to the inde-
pendent variable (grey40), both slopes and normalized slopes
were so overfit to a particular day as to not be useful.

Trees stay constant from day to day, and so theirtypeof
effect on snow should also stay more or less constant from
day to day. Exceptions exist: when the entire area is covered
by a cloud, for example, trees would not be the dominating
factor. But for the clear conditions which surface hoar bene-
fits from (and which existed in this study) we expect trees to
have the same general effect from day to day, area to area. So
we turned toward developing a relationship for a given size
increase per change in grey40.

4.5 Constant increase

Efforts with regression implied that we needed a way to
scale, by area, for the range in both crystal size and
greyscale. Both of those values do not stay constant
across large areas, but as here we focus on small areas
and even smaller scales of size estimation, they functionally
serve our purpose. To capture the observed and gener-
ally linear relationship with grey40, we split the greyscale
range for each area by the observed range in crystal size,
e.g. range(grey40)/range(meansizes). This gives an amount
of greyscale brightness increase per unit crystal size increase.

We applied this to the two areas sampled in January 2009.
To do so, we needed a minimum mean crystal size (0 mm)
and corresponding grey40 value, as well as a maximum mean
crystal size (14.7 mm for Area I or 12.5 mm for Area II) and
a greyscale range (as stated above, 0.177 for Area I, 0.156
for Area II). With these values, we can determine a slope for
a linear model to predict crystal sizefor each area. This type
of scaling, though simple, adapts the expected crystal sizes to
(a) the greyscale range of each area, and (b) the crystal size
range in the area.

Both the January sample areas each had the same averaged
minimum grey40 at 0 mm size locations. This dark greyscale
value was greybaseline=0.22. When all of this data was ap-
plied numerically to the January areas, it resulted in a surpris-

ingly cross-day, cross-sample result of1grey40=0.012/mm,
or a 1.2% increase in greyscale whiteness for every additional
mm of crystal size.

This constant increase strategy implies that a spatial size
prediction within the area depends on:

– The dark, usually 0 mm crystal-producing grey40 value
called greybaseline. 0 mm does not necessarily have to
serve as the minimum, but did for both surface hoar for-
mation periods in this paper.

– The value of grey40 – the 40 pixel radius greyscale av-
erage – on the image at the point we wish to predict, i.e.
grey40(lat, lon).

– 1grey40, which is the change in grey40 value per ex-
pected mm of surface hoar size for the specific surface
hoar layer and area. This part requires at least one (and,
for these areas, only one) field measurement.

4.6 Model

A generalization of the constant increase relation gives our
size prediction sizepredictat location (lat, lon) within the area:

sizepredict(lat,lon) =

(
grey40(lat,lon)−greybaseline

)
1grey40

(1)

Using the above model means that we may estimate the
mean size of a surface hoar crystal at the coordinates (lat, lon)
by using only satellite image data and two empirical scaling
numbers for the area: greybaselineand1grey40.

For the case of Areas I and II during the 16–22 January
2009 surface hoar cycle, Eq. (1) can be rewritten as:

sizejan 16−22(lat,lon) =

(
grey40(lat,lon)−0.22

)
0.012

(2)

To develop such a specific equation for an area, one pri-
marily needs to find1grey40 for that area. Since it equals
the amount of positive change in grey40 per expected mm
growth of surface hoar, we need to obtain bounds on both the
size and greyscale values for an area. Greyscale grey40 min-
imum and maximum bounds for the area are greybaselineand
greymax, respectively. Surface hoar crystal size minimum and
maximum values for the area are sizemin and sizemax, respec-
tively.

With these values, one may obtain the1grey40 for an area:

1grey40=
greymax−greybaseline

sizemax−sizemin
(3)

Physically finding these values is likewise intuitable. For
the greyscale values, greybaselineand greymax may be gener-
ally found via a histogram of grey40 for an area. More accu-
rately, they may be found in the image at the corresponding
locations of the sizemin and sizemax field samples.
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As for crystal sizes, field sampling may be done in the
brightest grey40 area of a 402 m2 area to obtain sizemax, and
in a greybaselinedark area to obtain sizemin. Even more gen-
erally, two samples of size and greyscale may probably be
obtained fromany two locations varying in size and grey40
values; however, using the expected minimum and maximum
values for an area allows the capture of the widest range and
thus a potentially more accurate coverage of that range.

Our experience indicates that the January surface hoar for-
mation cycle was typical for the general area, and it allowed
a simplifying step. For all days and both areas, the minimum
surface hoar crystal size sizemin was 0 mm. This can be con-
firmed both visually in the images in Fig.2, and by noting
that, physically, trees emit longwave radiation and can block
sky view enough to cause such 0 mm values.

This gives a more specific version of1grey40 which we
use in this paper:

1grey40=
greymax−greybaseline

sizemax
(4)

Finally, when Eq. (4) is combined with Eq. (1), we obtain
a more intuitive relation to the size obtained from an open
area field sample:

sizepredict(lat,lon) = sizemax
grey40(lat,lon)−greybaseline

greymax−greybaseline
(5)

As demonstrated by this relation, with this surface hoar
formation pattern one needs minimal local knowledge to ob-
tain the point sample of minimum or maximum mean size
for a given surface hoar cycle. They may be found in most
grey and least grey areas of a satellite image, respectively. Of
course, one may already see instances where large scale pro-
cesses would interfere with large scaling of this model. But
as assessed in the next section, for our 402 m2 sample areas
with trees as the dominant factor, this concept held.

5 Results

We found that the model in Eq. (2), when used to predict day-
to-day surface hoar sizes for the 16–22 January surface hoar
cycle, showed reasonable results. The standard deviation of
error for the January size predictions are less than half of the
mean crystal sizes, generally giving 2.5 mm average error on
7 mm average crystals. A more intuitive interpretation would
be that if one were to think of categories of crystal size, e.g.
biggeror smaller, the greyscale results usually predicted the
same category for a given point. Still, the model performed
better than the regression approach described above.

Statistical summaries about the residuals between pre-
dicted mean sizes and actual mean sizes for all days in the
cycle can be seen in Table1. The higher mean size with
lower maximum size in Area II reveals its more generally
open terrain than Area I. In other words, crystals grow larger

Table 1. Comparison of residuals for both sample areas. Residuals
are the difference(Actual Point Mean Crystal Size) – (Predicted
Point Mean Crystal Size). Each sample area contains 144 actual
point versus predicted point comparisons. Mean and maximum size
values are from all observed sample points for each area.

Residual Residual Mean Maximum
mean std dev crystal size crystal size

(mm) (mm) (mm) (mm)

Area I 2.07 2.75 7.36 14.7
Area II 2.59 2.82 7.41 12.5

in open areas, so the closer the mean is to the maximum size
the more we may expect it to be an area with mostly open
terrain.

One may note that the positive mean residual values for
both areas in Table1 imply that model estimates generally
underestimate the real crystal size. This gives support to the
implicit assumption of the model that for any greyscale value
brighter than the baseline value, surface hoar is assumed to
grow. The general underestimation of crystal sizes indicates
that the model applies the assumption in a relatively conser-
vative manner.

Crossplots for single days which have been spatially esti-
mated using the model may be found in Fig.7. In Fig.7a, one
can see a distinct widening trend in real-world size variance
for the lighter greyscale values. This demonstrates that while
trees account for much of the variance in the area, open areas
with light greyscale values produce a range of real sizes not
able to be predicted by this model. We expected this, as our
model only accounts, via greyscale, for the spatial effects of
trees.

We then confirmed this relation outside of the January for-
mation cycle. During the surface hoar formation cycle in
February 2009, we obtained an average single sample from
an average open location and 47 additional points in the area,
all using the same sampling method as in January. This new
area was at a different location (150 km to the northwest), and
a different aspect (south facing) to demonstrate the model
holding across differing time, aspect, and location.

The single point contained surface hoar with mean size
5 mm, and that point on Google Earth had a grey40 value
of 0.65, much whiter than the images from Area I or II.
Coincidentally, the area also had the same greybaseline=0.22,
which we found via a histogram of greyscale values of the
image. To obtain this greybaseline, we took the average dark
value of the lowest peak of dark grey40 values in a detailed
histogram.

We used the simplified1grey40 from Eq. (4). As men-
tioned above in Sect. 4.6, field methods would also ensure
that the dark greybaseline value did, in fact, correspond to
0 mm so the model can be properly scaled.
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Fig. 7. Crossplots of predicted versus actual surface hoar crystal
size for both sample areas.(a) Area I. (b) Area II.

This gives us a grey change per mm growth
1grey40=0.086/mm. From Eq. (1), we adapted the fol-
lowing model to predict mean sizes for the surrounding area,
for this new February layer:

sizefeb 17−20(lat,lon) =
grey40(lat,lon)−0.22

0.086
(6)

Using Eq. (6), we then predicted the sizes at each of
the 47 physical points that we sampled, and we compared
the predictions to the actual sampled values. The model
predicted the correct size of surface hoar to within 1.5 mm
for 60% of the points, and to within 2 mm for 70% of the
points. As the average crystal size from those 47 points also
equaled 5 mm, these results are similar to those of the Ja-
nuary cycle.

The model produced a mean of absolute value resid-
uals equal to 1.52 mm – meaning that, as before, actual
crystal sizes were generally larger than predicted – and a
standard deviation of actual residuals equal to 1.80 mm.

Fig. 8. Area used for verification of the greyscale relation.(a)
IDW map of measured mean crystal sizes in the new area sampled
on 19 February 2009. Black dots indicate the 47 actual physical
measurement and model verification points. Contours have been
added for visual clarity.(b) Satellite image corresponding to the
sample area used. Note the extreme slant in tree shading projection
on this south aspect satellite image. Satellite image is provided un-
der the Google Earth terms of use, copyright 2009 TeleAtlas, 2009
British Columbia, and 2007 Google Earth.

Visually, the IDW map confirms the same shading effect; the
satellite greyscale image and corresponding map are shown
in Fig. 8.

The similarity in accuracy between the model-building
data from January and the predicted February values indi-
cates that the constant increase strategy of using greyscale
is extracting as much as can be used. No one variable can
account for all of the variance in surface hoar size. But
greyscale does rather well, especially considering its ease of
use.
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6 Discussion

When talking about millimeter-sized changes in surface hoar
crystals, separating the amount of change caused by large
scale processes versus those associated with small scale vari-
ance (which appears as stochastic variance at best when cap-
tured at a resolution of one sample per 100 m, for example)
can be extraordinarily difficult, if not impossible (Hägeli
and McClung, 2000; Campbell et al., 2004; Campbell and
Jamieson, 2007).

This highlights the fundamental distinction betweenmea-
suring a process which affects surface hoar formation, and
mappingthe result of that process over terrain. The latter, es-
pecially, may occur both as a descriptive and as a discovery
method.

In this paper, we do not measure a process and then ex-
trapolate it over terrain to create our model; rather, we focus
only on mapping and prediction of surface hoar crystal size
via satellite photo greyscale values. And we focus on that
only for specific instances: sparsely treed, relatively shel-
tered, and small areas.

Qualitatively, the basis of this model lies upon capturing a
radius-of-effect for trees at a single point. Radiation balance,
air temperatures, humidity, surface temperatures – the varia-
tion of all of these well-known physical quantities is excep-
tionally difficult to estimate spatially at these small scales. A
physically successful method of spatial prediction may use
these values in the future. However, we cannot yet quanti-
tatively obtain these values on small spatial scales for non-
instrumented areas, much less with the same ease and accu-
racy with which we can for greyscale.

A result of this study is the demonstration of a possibly
useful strategy to find relations with spatial effects over ter-
rain. This strategy, as outlined throughout the paper, has two
parts. First, as instrumentation for huge numbers of spatial
points can be impractical at best, one may select areas where
the environment influences key variables. Sparse forests,
though in and of themselves interesting as skiing areas, also
represent the control of wind and relative consistency in the
major formative process – skyview – from day to day. Sec-
ond, though weather data may be most desirable for estima-
tion purposes, it remains spatially elusive at small scales, and
so using other augmenting sources of data such as greyscale
can help estimate a large and useful amount of variance in
crystal size.

Here, we demonstrate the accuracy of the model within
a 40 m×40 m area surrounding the single point sample.
Though this produces estimates at the most useful – i.e. skier
– scale, larger scaling may be limited. Scaling the model
into a significantly different and totally unsampled drainage
or aspect would probably not only affect the relative shading
in the satellite photos, but also introduce the effects of the
more large-scale formation processes which have not been
directly accounted for here.

For an illustrative example of these larger scale effects, ex-
amine the large grove of trees in the satellite photo for Area I
(Fig. 2). The cluster visually provides shade in the satellite
photos and appeared as a mechanism of storing and enhanc-
ing daytime heat in the left temperature map in Fig.5. How-
ever, the lack of trees in the photo on the slope immediately
to the north in Area I does not help predict its convex north
facing structure which so effectively allows the slope to con-
tinue cooling in daytime. Aspect has already been shown
to have an effect on surface hoar size (Cooperstein, 2008),
but aspect does not get captured by satellite greyscale val-
ues. A bright greyscale area on a South slope may have the
same value in our model as a bright greyscale area on a North
slope, but the two areas will probably produce different crys-
tal sizes. Sky view, though partially captured by shading in
this study, ultimately depends on more factors than greyscale
shading can provide.

As the number of trees per area increases, shading in-
creases and this model will indicate small surface hoar
growth, if any. As the number of trees per area decreases,
the mean size of surface hoar will increase according to the
model, and also by the intuitive concept of increased net out-
going longwave radiation.

However, with no trees or nearly no trees the effect of
shading will become less applicable and other effects such as
aspect (Cooperstein, 2008), moisture supply (Colbeck et al.,
2008), and wind (Hachikubo and Akitaya, 1997; Feick et al.,
2007) may become the main determining factors of spatial
variance in crystal size. As discussed above, the notably
larger actual surface hoar sizes in lighter greyscale valued
areas – larger than our model could capture, that is – indicate
that in areas with no large shading variance, other formative
factors dominate.

Furthermore, when longwave-tree interactions are not the
dominating factor within forests – say, a cloud covers the
sparse forest in the evening, or very high winds push through
the trees – entirely different conditions will result. This fact,
true for all poorly understood natural processes, indicates
that this model should not be used for multi-kilometer scale
modelling.

These open area formative factors oftentimes do not even
scale within mountain ranges, much less across them (Hägeli
and McClung, 2007). Thus, a general physical solution to the
spatial prediction problem remains challenging and elusive.

Even non-formative sources of error such as photography
resolution, angle of tress relative to the photography, accu-
racy of the GPS used to obtain the relation between sizemax
and the greyscale value, and other factors can all contribute
to how well the model works at any given location.
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7 Summary and outlook

This work shows the small-scale spatial variability of surface
hoar crystal size in sparse forests, and accounts for part of
that variability using one factor: sky view. We developed
a spatially predictive linear model which estimates surface
hoar crystal size using averaged greyscale values in a dry
land satellite image. Physically, this mechanism relates the
size of surface hoar to its amount of sky view, or the amount
of tree shading around that point within a 4 m radius. The
relation held across different days and aspects in a January
2009 formation cycle, and also worked in an entirely differ-
ent area, aspect, and formation cycle in February 2009. The
results of the model generally do well at categorizing larger
or smaller crystals, and had reasonable error for prediction
using only one independent variable.

No previous work has done a two-dimensional spa-
tial examination with this many surface hoar measurement
points, much less developed a spatial model for surface
hoar size that works at all, on any scale, in any conditions.
As a field, we have yet to even set eyes upon extensively
measured spatial variance of surface hoar and understand it
qualitatively – this skier-scale study represents only a begin-
ning. So, though the highest goal would be to have a model
that works everywhere all the time, less than 30% average
error for a new cycle and area represents a fairly reasonable
start.

Independently of predictive uses, our data shows the pre-
viously unknown extreme crystal size variance to be found at
these 40 m scales. The greyscale relation shows the radius of
effect of trees when they are the dominating factor, and it rep-
resents the first focus on thespatial surface hoar formation
variable of sky view.

Also, this work demonstrates that surface hoar formation
research need not necessarily be limited to single points near
accurate weather stations. Other augmenting information
may be found and coaxed into helping find trends and pro-
duce estimates in areas and at scales where precise weather
data at each point would be impossible to obtain.

More generally, this study shows the extreme spatial vari-
ance of surface hoar sizes on the skier scale. Such variance
within these small 40 m×40 m areas clearly shows the limi-
tation of trying to project single point estimates over a very
large area. Said another way: we cannot usefully spatially
map surface hoar formation for skiers over large scales be-
fore being able to do so over small ones. With a general pre-
diction of “5 mm mean crystal size” for a 40 m×40 m area,
crystals will still range from 0 mm to 7 mm, or larger. For the
January cycle, “8 mm mean crystal size” could mean a range
from 0 mm to 14 mm, all within a small area. This could
correspond to triggering ranging from very likely to very un-
likely, within the same area described with a single mean.
Measuring and noting small terrain effects,andhow they ac-
tually fit within the spatial variance of a larger area seems
more useful than simply striving for a larger scale mean size

prediction. One can see the use in mapping and understand-
ing – even one by one – the spatial factors that create such
variance.

Our approach here limits wide applicability. But, the re-
sults of such an approach can still provide important uses,
as this study does for understanding sky view for skiers in
trees. And, such an approach – with a semi-controlled en-
vironment and additional augmenting data – maximizes the
potential to find a useful relation that may be further built
upon later. In the same way that a handful of factors may be
identified and measured for one single point of surface hoar
growth, finding conditions and areas that allow identification
and measurement of only a fewspatial factors at once may
be key to pushing our physical and single-point surface hoar
knowledge into the spatial realm.
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