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1Universidad Polit́ecnica de Madrid, Escuela Técnica Superior de Ingenieros en Topografı́a, Geodesia y Cartografı́a
(ETSITGC), Departamento de Ingenierı́a Topogŕafica y Cartografı́a, Madrid, Spain
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Abstract. This paper presents an approach for assessing
earthquake-triggered landslide susceptibility using artificial
neural networks (ANNs). The computational method used
for the training process is a back-propagation learning algo-
rithm. It is applied to El Salvador, one of the most seismi-
cally active regions in Central America, where the last se-
vere destructive earthquakes occurred on 13 January 2001
(Mw 7.7) and 13 February 2001 (Mw 6.6). The first one trig-
gered more than 600 landslides (including the most tragic,
Las Colinas landslide) and killed at least 844 people.

The ANN is designed and programmed to develop land-
slide susceptibility analysis techniques at a regional scale.
This approach uses an inventory of landslides and differ-
ent parameters of slope instability: slope gradient, eleva-
tion, aspect, mean annual precipitation, lithology, land use,
and terrain roughness. The information obtained from ANN
is then used by a Geographic Information System (GIS) to
map the landslide susceptibility. In a previous work, a Lo-
gistic Regression (LR) was analysed with the same param-
eters considered in the ANN as independent variables and
the occurrence or non-occurrence of landslides as dependent
variables. As a result, the logistic approach determined the
importance of terrain roughness and soil type as key factors
within the model. The results of the landslide susceptibility
analysis with ANN are checked using landslide location data.
These results show a high concordance between the landslide
inventory and the high susceptibility estimated zone. Fi-
nally, a comparative analysis of the ANN and LR models are
made. The advantages and disadvantages of both approaches
are discussed using Receiver Operating Characteristic (ROC)
curves.

Correspondence to:
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1 Introduction

Landslide susceptibility studies are appropriate for evalua-
tion and mitigation plans in potential landslide areas. There
are several techniques available for landslide susceptibility
research; however, due to uncertainty as an inherent nature
of landslide phenomena, statistical and artificial intelligence
approaches provide computational models to assess land-
slide susceptibility over large regions. In January and Febru-
ary 2001, El Salvador experienced several destructive earth-
quakes that caused hundreds of landslides of various sizes.
In this study, we have used an ANN model to assess the sus-
ceptibility of the whole country of El Salvador to earthquake-
induced landslides.

The first of those earthquakes occurred on 13 January
2001, with the epicentre located off the western coast of
El Salvador in the subduction zone between the Cocos and
Caribbean plates (Fig. 1). The earthquake had a magnitude
of Mw 7.7 and it produced more than 600 landslides, the most
significant of them taking place in Santa Tecla, Las Colinas
(Fig. 2), where 585 people died.

The second destructive earthquake occurred one month
later, on 13 February, with a magnitude ofMw 6.6. The epi-
centre was located to the west of San Miguel, this earthquake
was associated with local faults that cross the country from
east to west.

Data collected in situ are composed of numerous evi-
dences of landslides and effects of the earthquakes, as well as
with aerial images, topographical and geologic maps. They
provide a complete base for the application of landslide sus-
ceptibility methodologies and a data source to contrast with
the observations of landslides. The calibrated models will
allow for the post-evaluation of landslide susceptibility asso-
ciated with future earthquakes in El Salvador.
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Fig. 1. DEM data together with the main epicentres of 2001 in El Salvador, tectonic features and landslide locations of 13 January 2001
earthquake (from ESRI shaded relief imagery which was developed using GTOPO30, Shuttle Radar Topography Mission (SRTM), and
National Elevation Data (NED) data from the USGS).

Fig. 2. Earthquake-triggered landslide in Las Colinas, Santa Tecla
(El Salvador, 13 January 2001), where 585 people died. The epicen-
ter was located off the western coast of El Salvador in the subduc-
tion zone between the Cocos and Caribbean plates with a magnitude
of Mw 7.7 and a focal depth of 40 km (Benito et al., 2004).

2 Brief state of the art

Predicting future landslide locations requires a quantitative
methodology to model these complex phenomena from past
events with data gathered in the field or by other techniques,
such as remote sensing, aerial photography or LIDAR. In the
last few years, the development and the spread of soft com-
puting applied to model natural phenomena have increased

exponentially. The fuzzy set theory, ANN, and genetic al-
gorithms were applied to classification problems with the
Geographic Information System (GIS), mainly because of
their high capacity for analyzing heterogeneous and uncer-
tain data.

ANNs are non-linear function approximators suitable for
the assessment of indirect landslide susceptibility estima-
tions. They provide good predictions even when given noisy
and uncertain data. ANNs have been applied successfully to
the assessment of landslide susceptibility. Lee et al. (2003a)
determined landslide susceptibility by using ANN models
and compared neural models with probabilistic and statisti-
cal ones. Lee et al. (2004) developed a method to integrate
ANNs to calculate the Landslide Susceptibility Index (LSI).
The weights of the relative importance of different factors
for landslide occurrence were successively found from the
ANN model. Lee et al. (2003b) used a multi-layered percep-
tron (MLP) neural network to estimate landslide susceptibil-
ity. The results were checked by ranking the susceptibility
index in classes of equal area and the results showed a good
agreement between the susceptibility map and the landslide
inventory. Ermini et al. (2005) used ANNs to classify ter-
rain units considering hillslope factors by applying two neu-
ral architectures: a PNN (Probabilistic Neural Network) and
a MLP network; they concluded with a slight preference for
the MLP network. Ǵomez and Kavzoglu (2005) estimated
an ANN model for assessing landslide risk with different
parameters derived from a Digital Elevation Model (DEM),
remote sensing imagery, and documentary data in a MLP.
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Yesilnacar and Topal (2005) applied logistic regression (LR)
analysis and neural networks to prepare a landslide suscep-
tibility map for the rerouting of a pipeline after a segment
of natural gas pipeline was damaged due to a landslide in
Turkey. The strengths and weaknesses of these techniques
were compared and the results found by ANNs were more
realistic than those found by LR.

3 Application to El Salvador: data sources and GIS

The methodology for the assessment of earthquake-triggered
landslide susceptibility has involved the integration of data
sources into a GIS (Fig. 3). The evaluation of suscepti-
bility requires data input from variables representing phys-
ical parameters known to contribute to the initiation of land-
slides. El Salvador GIS is composed of diverse informa-
tion including a 1:100 000 geological map, a 1:25 000 Dig-
ital Cartography, precipitation data, ground strong motions
records, epicentres catalogue, and an inventory of landslides.
The landslides inventory used consists of data on slope move-
ment from the 2001 El Salvador earthquakes compiled by
the SNET (Servicio Nacional de Estudios Territoriales) of
El Salvador. Descriptions and classifications of landslides
were mainly based on the system developed by Cruden and
Varnes (1996), which takes into consideration the type of
movement, materials involved, and the state or activity of the
unstable slopes. For our study, the inventory was processed
and the debris flows were taken into account and separated
from other types of mass movements, such as rock falls. Out
of 235 samples, 112 belonged to this inventory as landslides
and 123 samples were removed as non-landslides.

All of these layers of information from different sources
and formats have been integrated into a GIS. In addition,
there are other layers of generated maps and requirements,
including Digital Terrain Model (DTM), slope map, aspect,
roughness, and precipitation, for the assessment susceptibil-
ity (Garćıa-Rodŕıguez et al., 2008, 2009).

The physical properties of slope-forming materials, such
as strength and permeability, are related to the lithology fac-
tor, which therefore should affect the likelihood of slope fail-
ure (Dai et al., 2002). The GIS information of lithology is
structured into three types of layers: polygons (geologic, pe-
dogenic, and volcanic classes), lines (faults, escarpments,
dikes, paleo-riverbeds, and mineral seams), and points (fu-
maroles, fossils, and volcanic classes). The surface geologic
maps (scale 1:100 000) were digitised and georeferenced to
obtain these data. The lithological units shown in the sur-
face geologic maps were reclassified according to the clas-
sification by the SNET and a generalized geologic map was
produced in four types of rock and soil: hard rock, soft rock,
consolidated soil, and unconsolidated soil (Garcı́a-Rodŕıguez
et al., 2008). There are two lithological categories with rel-
atively high landslide density: hard rock (43.2%) including
pyroclastic deposits and associated volcaniclastics and un-

Fig. 3. GIS methodology for the assessment of earthquake-triggered
landslide susceptibility.

consolidated soil (41.5%) including Tierra Blanca (TB) and
Tobas de Color Café (TCC). Generally, rock falls are initi-
ated by tension in the upper half of the slopes, since TB and
TCC are located in the upper part of the mountains.

A digital terrain model (DTM) can be used to classify
the local relief and locate points of maximum and minimum
heights. A model with a 100-m cell size was created from
20-m contour lines on the 1:25 000 topographic maps. The
cell size was chosen for its suitability for work at a regional
scale. Some terrain attributes, such as slope gradient and as-
pect, were derived from the DTM. Slope gradient was calcu-
lated using a 3×3 moving window based on of Horn’s (1981)
algorithm. For slopes of uniform isotropic material, an in-
creased slope gradient correlates with an increased likelihood
of failure. However, the soil thickness and strength may vary
over a wide range among sites. Aspect can be defined as
the slope direction, which identifies the downslope direction
of the maximum rate of elevation change. The aspect of
a slope can influence landslide initiation because it affects
moisture retention and vegetation cover, which in turn affect
soil strength and susceptibility to landslides. The amount
of rainfall on a slope may also vary depending on its aspect
(Wieczorek et al., 1997).

Terrain roughness is a measure of the undulation or relief
of the topographic surface. The analysis of texture within
a digital image is closely allied to the geomorphometric
measurement of roughness. In fact, the variation of rough-
ness embodies two primary scales: grain (or image reso-
lution, 100 m in our case) and texture. Grain refers to the
longest significant wavelength of a terrain surface, while tex-
ture refers to the shortest one. In order to calculate the ter-
rain roughness, we applied spatial variability function to the
DTM (Mardia, 1972; Band, 1989). The spatial variability
function (R) measures the dispersion of the vector perpendic-
ular to the surface; for example, for a nearly flat terrain, the
perpendicular vectors to the surface points will be approxi-
mately parallel, and this will give a low dispersion value. The
unit vector perpendicular to the surface at pointi is given by
an expression that depends of the slope and aspect at point
i (Upton and Fingleton, 1989). The roughnessw is a func-
tion of R which is obtained as the square sum of the vector
coordinates for neighbouring points and the neighbour envi-
ronment (n).
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For the rainfall factor, we created a mean annual precipi-
tation map with a resolution of 100×100 m. This was done
through Kriging interpolation (Isaaks and Srivastava, 1989)
from the precipitation database compiled by the SNET for
the period 1961–1990.

In addition, the role of vegetation in slope stability is con-
siderable. Some types of land use/cover, especially woody
vegetation with large and strong root systems, provide both
hydrological and mechanical effects that generally stabilize
slopes (Montgomery et al., 2000). In contrast, more land-
slides may be initiated in unvegetated areas. Therefore, land
use/cover map from SNET was reclassified in 13 classes: ur-
ban areas, forests, annual, mixed and permanent crops, mois-
ture areas, swamps, mining, grasses, bush vegetation, indus-
trial areas, artificial green, areas and lakes (Garcı́a-Rodŕıguez
et al., 2008).

4 Artificial Neural Networks model

ANNs are generic non-linear function approximators that
were developed by McCulloch and Pitts (1943) and exten-
sively used for pattern recognition and classification. ANNs
are networks of highly interconnected neural computing el-
ements that have the ability to respond to input stimuli and
to learn to adapt to the environment. ANN establishes rules
during the learning phase and uses these rules to predict out-
puts. The input neurons in the neural network are intrinsic
factors to the slope instability, such as topographic, climatic,
geological, and geotechnical data from different sources, and
are stored in a GIS.

In order to cope with non-linear separable problems, such
as the landslide phenomena, a complex model is needed.
ANNs have shown their effectiveness dealing with non-
linearity on several occasions (Ercanoglu et al., 2005). Be-
cause ANNs have the ability to handle imprecise and fuzzy
data, they can be used to work with continuous, categorical,
and binary data without violating any assumptions. These
techniques have been successfully applied to many prob-
lems, including forecasting and prediction problems (Bishop,
1996). The ANN model is employed to analyze specific ele-
ments related to the study area that contributed to landsliding
in the past. The resulting information can then be used in the
prediction of areas that may face landsliding in the future.
The ANNs are programmed with error correction learning,
which means that some desired response for the system must
be known (Werbos, 1974; Parker, 1985).

The behaviour of an ANN depends on the architecture of
the network and on both the weights assigned to the connec-
tions and the transfer function (Fig. 4). In our case, we have
chosen seven input layers, one hidden layer, and one output
layer. First, we present the system with the input data and
obtain the output. Second, we adjust the system to make the
output closer to what it should be. The first stage is referred
to as feed-forward, and the second as back-propagation.

Fig. 4. Artificial Neural Network Architecture with seven neurons
in the input layer to correspond to the independent variables. The
wij andwjk represent the weights,oj represents values for the hid-
den layer, andyk represents the dependent variable, which gives of
the current pixel’s degree of susceptibility for a landslide.

Fig. 5. A back-propagation neural network with the sigmoid func-
tion used as activation function of the ANN.

4.1 Back-propagation algorithm

The back-propagation algorithm was applied to calculate the
weights between the input layer and the hidden layer, and be-
tween the hidden layer and the output layer. This was accom-
plished by modifying the number of hidden nodes, the learn-
ing rate and the momentum parameters until the aim was
reached (minimum RMS values). The nodes perform non-
linear input-output transformations by means of sigmoid ac-
tivation functions. This structure of nodes and connections,
known as the network topology, together with the weights of
the connections, determines the final behaviour of the net-
work.

The sequence of the back-propagation algorithm is pre-
sented in Fig. 5. The receiving node sums the weighted sig-
nals from all the nodes to which it is connected in the pre-
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ceding layer. The expression is explicated by the equationhj

(Eq. 1)

hj =

∑
i

wijxi (1)

wherewij is the weight between the nodei and the nodej ,
andx is the output value from nodei. The value produced
by the hidden nodej is the activation functionf evaluated
at the sum produced within the nodej (Eq. 2):

oj = f
(
hj

)
= f

(
n∑
i

wijxi

)
. (2)

oj is the output value from nodej of the hidden layer. In
turn, the output value is a function of the weight between the
hidden and output layers, and the outputs of the input nodes
(Eq. 3):

yk = f

(
h∑
i

wjkoj

)
. (3)

Wherey is the final response variable of the ANN. The acti-
vation functionf is normally a non-linear sigmoid function,
which is applied to the sumf of the weight of the inputs
before proceeding to the next layer. It is used the sigmoid
function (Eq. 4):

oj = f
(
hj

)
=

1

1+e−hj
, (4)

which is easy to calculate because of its peculiar characteris-
tic that its derivative is expressed with the same function, as
shown in (Eq. 5),

f ′
(
hj

)
= f

(
hj

)(
1−f

(
hj

))
. (5)

When developing a neural network for a particular problem,
the data set is usually separated into two subsets: training
and validation data. In the training set, the selection of sam-
ples indicates the most relevant aspects for solving the prob-
lem, while the validation data are useful for the evaluation of
the neural network. The network architecture can be modi-
fied, such as changing the number nodes in the hidden layer,
learning rate and momentum parameter. The combination
selected was [1, 0.9, 0.1], respectively. From the initial data,
80% was chosen randomly for training and the remaining
20% was used for validation. Initially, the network is pro-
vided with random connection weights which represents the
input to the network and the expected output. The weights
are automatically modified to reduce the output error through
an iterative procedure of back-propagation of errors. Conse-
quently, the process is repeated until the tests are satisfactory.
Using an ANN as a linear classifier would mean the use zero
hidden layers. In our study, we have used one hidden layer,
and tried several neurons within that layer. The more lay-
ers and the more neurons within each layer that are used, the
more non-linearity that is obtained. Theoretically, the more

non-linearity there is, the better the model would be for a
natural phenomenon; however, more training samples would
be needed to estimate the weights. We have observed that
a large number of weights lead to poor generalizations, be-
cause we have a limited number of training samples. The
training rate is the other parameter of the ANN that we tuned
although the convergence of the network was not very sen-
sitive to it. Finally, 1000 iterations were taken for each test.
While better results were seen with the higher the number of
iterations, we observed that for most of the trials, stabiliza-
tion happened around 200 iterations.

4.2 Validation process

The total error of the model is defined by the formula (Eq. 6):

ET =

∑
k

E (6)

This error is a measure of the discrepancy between the net-
works output value and the target (desired output) value.
Neural network training is performed by trying to minimize
the total error for the training set, as a function of the weights.
The error is back-propagated through the neural network un-
til the system minimized the sum of errorsET by changing
the weights between the layers. The adjusted weights can be
expressed by the generalized delta equation (Eq. 7):

w′

ij = wij +1wij (7)

where1wij is the incremental difference of weight, andη is
the learning rate parameter, positive and less than one (Eq. 8):

1wij = −η
∂E

∂wij

(8)

The landslide susceptibility model must measure the accu-
racy of the results in order to know the scientific significance
(Chung and Fabbri, 1999, 2003). The validation of the anal-
ysis was carried out by comparing the training sites and the
estimated landslide map obtained by applying the weights
derived from the ANN model.

A confusion matrix (contingency matrix) was calculated
to determine the accuracy of a classification result by com-
paring the location and class of each ground truth pixel with
the corresponding location and class in the classification im-
age. The overall accuracy was calculated by summing the
number of pixels classified correctly and dividing by the total
number of pixels. The ground truth Region of Interest (ROI)
defines the true class of the pixels. The pixels classified cor-
rectly are found along the diagonal of the confusion matrix
(Table 1) which lists the number of pixels that were classi-
fied into the correct ground truth class. The results of the
ANN process have an overall accuracy (95.1%) and Kappa
coefficient (0.9013) from the confusion matrix (Table 1).
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Table 1. Confusion matrix representing the number of pixels and percentage of ground truth for two regions: landslide (region #1) and
non-landslide (region #2) and producer and user accuracy in number of pixels and percentage.

Ground Truth (Pixels) Ground Truth (Percent)
Class Region #1 Region #3 Total Region #1 Region #2 Total

Unclassified 0 0 0 0 0 0
Region #1 2592 33 2625 90.41 0.95 41.35
Region #2 275 3448 3723 9.59 99.05 58.65
Total 2867 3481 6348 100.00 100.00 100.00

Overall Accuracy = 95.15%
Kappa Coefficient = 0.9013

Percent Pixels
Class Producer Accuracy User Accuracy Producer Accuracy User Accuracy

Region #1 90.41 98.74 2592/2867 2592/2625
Region #2 99.05 92.61 3448/3481 3448/3723

The Kappa coefficient (k) is another measure of the clas-
sification accuracy. It is calculated by the equation (Eq. 9):

k =

N
∑
k

xkk −
∑
k

xk6x6k

N2−
∑
k

xk6x6k

(9)

whereN is the total number of pixels in all the ground truth
classes,xkk is the element of the confusion matrix diago-
nals, andxk6x6k is the elements of the ground truth pixels
in a class times the sum of the classified pixels in that class
summed over all classes.

The producer accuracy (PA) and user accuracy (UA) are
shown in Table 1. The PA is a measure indicating the prob-
ability that the classifier has labelled an image pixel into
Class A, given that the ground truth is Class A. In the con-
fusion matrix example, the region #1 class (landslide) has
2867 ground truth pixels, where 2592 pixels are classified
correctly. The producer accuracy is the ratio 2592/2867, or
90.41%. UA is a measure indicating the probability that a
pixel is Class A, given that the classifier has labelled the pixel
into Class A. The classifier has labelled 2625 pixels as the
region #1 class, and 2592 pixels are classified correctly. The
user accuracy is the ratio 2592/2625 or 98.74%.

The ROC visualizes a classifier’s performance in order to
select the proper decision threshold. It provides a proba-
bility of detection versus a probability of false alarm curve
(Fawcett, 2006). ROCs are equivalent to prediction and
success-rate curves proposed by Chung and Fabbri (2003).
As can be observed from the ROC analysis (Fig. 6), the LR
approach has a better performance than the ANN for a small
range (between 0.0 and 0.07) of false alarms; however, when
false alarms increase the ANN approach works better than
LR. When false alarms are about 0.4, both techniques work
similarly.

Fig. 6. The ROC curve calculated for the ANN model. The red
color represents the LR model and blue color represents the ANN.

Some authors take the area under the ROC curve (AU-
ROC) as a measurement of the model’s accuracy (Hosmer
and Lemeshow, 2000; Lee, 2005). The area is a measure of
discrimination, that is, the ability of the technique to clas-
sify those pixels correctly with and without some probabil-
ity of landslide. This threshold-independent measure of dis-
crimination between both classes takes values between 0.5
(no discrimination) and 1 (perfect discrimination). There-
fore, the closer the ROC plot is to the upper left corner, the
higher the overall accuracy of the test is. An area of 1 repre-
sents a perfect test and an area of 0.5 represents a worthless
test. A rough guide for knowing the accuracy of a classifier
is 0.5–0.6 for a fail, 0.6–0.7 for poor, 0.7–0.8 for fair, 0.8–0.9
for good, and 0.9–1 for excellent. The area corresponding to
the ANN model is 0.963; while in the LR model, it is 0.980.
This indicates a very high predictive capacity for both mod-
els. Although the value is slightly better for the LR model,
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Fig. 7. Susceptibility map calculated from a methodology based on the ANN model.

Table 2. Number of pixels and percentage of susceptibility map
classified into five levels: very low, low, medium, high, and very
high.

Susceptibility Level

Very Low Low Medium High Very High

N. pixels 954.799 68.723 71.186 707.064 267.731
Percentage (%) 46.1% 3.3% 3.4% 34.1% 12.9%

it cannot be said that LR is better than ANN is. What is in-
teresting in the plot is the shape of the curves and how the
curves cross, which we will discuss further in Sect. 6.

5 Susceptibility map

The main assumption in slope instability modelling is that
the past occurrence of landslides at a specific site is indica-
tive of the potential for future landslides to occur in sites with
similar characteristics. The evaluation of susceptibility re-
quires data input of variables representing physical parame-
ters known to contribute to the initiation of landslides. An
ANN model was estimated by incorporating the physical pa-
rameters contributing to the formation of landslides. The ter-
rain conditions of El Salvador were fed into the ANN model
to calculate the landslide susceptibility. The susceptibility
values obtained by this model were converted to a raster
file in a GIS-based regional susceptibility, and a landslide
susceptibility map for El Salvador was produced (Garcı́a-
Rodŕıguez, 2009).

The results are shown in aSusceptibility Map (S)(Fig. 7),
which defines the slope stability of an area into categories
that range from stable to unstable. The susceptibility map in
Fig. 7 is a representation of the histogram of the probabil-
ity maps with different categories (Ayalew and Yamagishi,
2005). For our study, five susceptibility classes are chosen:
very low, low, medium, high, and very high (Table 2). The
classification of susceptibility is checked by the examination
of the number of landslides locations within each class, the
high and very high classes have 83% of landslides which sup-
plies robustness to the ANN approach. For its representation,
we used a color scheme that relates warm colors (red, orange,
and yellow) to unstable and marginally unstable areas and
cool colors (green shades) to stable areas. Similar to other
studies, the landslide susceptibility model using ANN (Rossi
et al., 2010) has a strong dichotomy in zonations, with a lim-
ited number of intermediate susceptibilities (0.2–0.9).

6 Discussion and conclusions

In previous sections, a landslide susceptibility map of a re-
gional scale of El Salvador was derived by using an ANN and
employing a back-propagation learning algorithm (Fig. 7).
This ANN was programmed with the landslide inventory
(80% training dataset), and the information was included in
a Geographic Information System (GIS). The factors consid-
ered were slope gradient, slope aspect, elevation, land-use,
lithology, mean annual precipitation, and roughness terrain
which were integrated on a GIS (Garcı́a-Rodŕıguez et al.,
2008). The validation process was performed with a con-
fusion matrix for an overall accuracy of 95.1%.
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Recently, we have worked with LR techniques using the
same input data, and the results illustrated the importance
of terrain roughness and soil type as key factors within the
model; using only these two variables, the analysis returned
a significance level of 89.4% (Garcı́a-Rodŕıguez et al., 2008,
2009). In the LR, the probability was estimated according to
the logistic formula, which provided a deterministic model
for the data and yielded weighted factors for each contribut-
ing factor. It also allowed the calculation of the odds ratio,
which represents the degree of risk associated with each fac-
tor. However, LR fits the data to a fixed function, so it is less
flexible and less capable of solving complex problems com-
pared to ANNs. The advantages of ANNs and its possible
application to the evaluation of landslide susceptibility come
from the remarkable information processing characteristics
of the artificial simulated biological system, including the
ability to handle imprecise and fuzzy information, fault and
failure tolerance, high parallelism, non-linearity, robustness,
capability to generalize, and tolerance to noise data (Basheer
and Hajmeer, 2000). On the other hand, a disadvantage is
that they are known as black-box methods, since it is not
known exactly how ANNs learn particular problems and ap-
ply the extracted rules to new cases, or how conclusions can
be drawn from the trained networks (Gómez and Kavzoglu,
2005). Although the accuracy produced in our work is of
95.1% for the ANN versus 89.4% for the LR, the black-box
characteristic of the former does not allow for the investiga-
tion of which variables are more influential to the response
variable. However, this is possible with the LR because the
weight of each factor is known.

Given that both the ANN and LR methods have great AU-
ROC, only the ROC curves provides some subtle differences
in the modus operandi of each classifier. For fewer false
alarms, the sensibility of LR is superior to ANN, while for
higher false alarm the superiority is for the ANN until a value
of approximately of 0.4 of false alarms, when both classifiers
perform similarly. This characteristic translates into Fig. 6,
where it can be observed how the ANN gives broader areas
of susceptibility than its correspondent for LR, as developed
by Garćıa-Rodŕıguez et al. (2008). The LR shows a more
clearly defined area of susceptibility that corresponds to a
steep ROC curve, while ANN gives a spread-defined area of
susceptibility that corresponds to a gradual rise of the ROC
curve.

ANNs have been used in areas which were once reserved
for multivariate statistical analysis. Owing to this they are
often considered to be statistical methods; however, it is nec-
essary to be aware of subtle conceptual differences between
these two methods in order to use ANNs effectively. In par-
ticular, we are using a specific type of ANN called backprop-
agation with one hidden layer, this is closely related to the
statistic method called projection pursuit regression, which
projects the data matrix of explanatory variables in the opti-
mal direction. Compared with the statistical methods, neural
networks allow the target classes to be defined with more

consideration to their distribution in the corresponding do-
main of each data source (Zhou, 1999). The use of a GIS
where the information is stored in layers facilitates imple-
mentation of statistical or computational models, such as we
have showed in this paper.

A literature review of recent works reveals that authors
found ANN to be superior to other methods; particularly,
some works compared LR and ANN using different variables
and data; most of them confirm the superiority of ANN over
LR. The first to compare these two methods were Yelsilnacar
and Topal (2005); we have mentioned it above, they found
ANN to be more realistic for landslide susceptibility map-
ping. More recently, other authors also worked with LR and
ANN for landslide susceptibility maps. Falaschi et al. (2009)
compared LR and ANN and found ANN to be superior to
LR. Yilmaz (2009) found ANN superior to frequency ratio
and logistic regression; they both used ROC as the evalua-
tion element. Pradhan and Lee (2010) also found ANN to
be superior to frequency ratio and logistic regression for data
for the Klang Valley, Malaysia; they performed trials with
several different factors; in all cases, ANN was superior to
LR.

Given the idiosyncrasy of the specific problem dealt with
in this paper, such as scale and inventory, the ANN model
is superior to the LR model in general terms, even though
the AUROC is slightly better for the LR model, but there
are others characteristics that should be taken into account
when performing the analysis, such as flexibility of model,
explicability of variables, and ROC shape. Finally, it could
be said that there is no a best model for all cases, it depends
on many factors including the number of training samples,
the independent variables being considered, and the scale.

Acknowledgements.This research has been developed within
the framework of the ANDROS Project, and was financed by
the Spanish Ministry of Science and Education (CGL2005-
07456-C03-03/BTE), the Ministry of Science and Innovation
(CGL2009-13768) and Technical University of Madrid - Latin-
American Relationships (AL08-PID-038). Cartography data have
been provided by the Ministerio de Ambiente y Recursos Naturales
(MARN) of the El Salvador. The authors thank these contributors,
and especially to Belén Benito, for their support. The authors
would also like to express their gratitude to Editor A. Günther,
reviewer H.-B. Havenith and two anonymous reviewers, for their
constructive criticisms of an earlier version of this paper.

Edited by: A. G̈unther
Reviewed by: H.-B. Havenith and two anonymous referees

References

Ayalew, L. and Yamagishi, H.: The application of GIS-based logis-
tic regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains, Central Japan, Geomorphology, 65, 15–31,
2005.

Nat. Hazards Earth Syst. Sci., 10, 1307–1315, 2010 www.nat-hazards-earth-syst-sci.net/10/1307/2010/



M. J. Garćıa-Rodŕıguez and J. A. Malpica: Landslide susceptibility in El Salvador based on an ANN model 1315

Band, L. E.: Spatial aggregation of complex terrain, Geogr. Anal.,
21, 279–293, 1989.

Basheer, I. A. and Hajmeer, M.: Artificial neural networks: funda-
mentals, computing, design and application, J. Microbiol. Meth.,
43, 3–31, 2000.

Benito, B., Cepeda, J. M., and Martı́nez D́ıaz, J. J.: Analysis of the
spatial and temporal distribution of the 2001 earthquakes in El
Salvador, in: Geological Society of America Special Paper 375,
Natural Hazards in El Salvador, edited by: Rose, W. I., Bom-
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