
Nat. Hazards Earth Syst. Sci., 10, 1239–1252, 2010
www.nat-hazards-earth-syst-sci.net/10/1239/2010/
doi:10.5194/nhess-10-1239-2010
© Author(s) 2010. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

An integration platform for heterogeneous sensor systems
in GITEWS – Tsunami Service Bus
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Abstract. The German Indonesian Tsunami Early Warning
System (GITEWS) is built upon a complex sensor data in-
frastructure. To best fulfill the demand for a long living sys-
tem, the underlying software and hardware architecture of
GITEWS must be prepared for future modifications both of
single sensors and entire sensors systems.

The foundation for a flexible integration and for stable in-
terfaces is a result of following the paradigm of a Service Ori-
ented Architecture (SOA). The Tsunami Service Bus (TSB) –
our integration platform in GITEWS – realizes this SOA ap-
proach by implementing the Sensor Web Enablement (SWE)
standards and services.

This paper focuses on architectural and implementation
aspects of the TSB. Initially, the general architectural ap-
proach in GITEWS by SOA and SWE is presented. Based on
this conception, the concrete system architecture of GITEWS
is introduced. The sensor integration platform TSB is then
discussed in detail, following by its primary responsibilities
and components. Special emphasis is laid on architectural
transparency, comprehensible design decisions, and refer-
ences to the applied technology.

1 Objectives

The Tsunami Service Bus (TSB) is the sensor integration
platform of the German Indonesian Tsunami Early Warning
System (Rudloff et al., 2009). Due to the geological situation
in Indonesia, the primary goal of GITEWS is to deliver a re-
liable tsunami warning message as quickly as possible. This
is achieved using several sensor systems: the seismological
system, the near real time GPS deformation monitoring sys-

Correspondence to:J. Fleischer
(jens.fleischer@gfz-potsdam.de)

tem, several tide gauges, and buoy systems. Together they
provide the fundamental data necessary to support the pre-
diction of a tsunami wave performed by the warning center.
But all these sensors use their own rather fixed proprietary
data formats and specific behaviors (Fig. 1).

This is complicated by the fact that GITEWS is a long run-
ning system, which has to cope with changing requirements
over time: new sensor types might be added while old sen-
sors will be replaced by newer ones. Additionally, new al-
gorithms by experts or including foreign sensor networks are
assumed to change interfaces and quantity structures even
during the implementation phase. In order to manage this
multitude of sensors over time, an additional intermediate
layer has to be introduced to provide both the required flex-
ibility for sensor integration as well as a stable and uniform
interface for the warning system. Thus, seen from an archi-
tectural viewpoint, GITEWS is a typical integration project.

2 Requirements

Although the overall functional requirements for the integra-
tion platform TSB could have been stated at project start, the
non-functional requirements for system operations were un-
certain:

– The TSB shall provide a standardized interface for ac-
cessing sensor data as well as for tasking the sensors.
The time for accessing sensor data shall be in a range of
less than seconds.

– The TSB shall provide midterm storage (weeks) of all
incoming sensor data, including post processing and
quality checks. Long-term sensor data is not meaning-
ful for an early warning system. The time for processing
incoming sensor data shall be in a range of seconds or
less.
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Fig. 1. Multitude of sensors.

– Raw data, like seismic wave data (e.g. MiniSeed), is not
stored or processed by the TSB. This work has to be
done by the preceding sensors or sensor systems. The
TSB provides only already processed sensor data as “in-
formation products” necessary for the warning process.
E.g. earthquake messages, GPS land displacement vec-
tors, or tide-reduced water heights.

– The TSB shall provide a flexible integration mechanism
of new or not foreseen sensor types.

– The implementation of the TSB shall be reliable and
robust; operating 24 h a day, 7 days a week.

– A survey of planned sensors and their samplings led to
a coarse quantity structure of:

– The processing and management of ca. 50 sensors
and 10 different sensor types.

– At most a 1 Hz frequency of new arriving sensor
messages at the TSB in case of high tsunami sam-
pling rates.

– At most a peak of 600 sensor samples per second to
be processed and stored at by the TSB (accounting
the numbers of sensors and their sampling rates).

3 Architectural blueprint

The TSB-approach realizes a functional integration (other
than a data level integration), where functionality is provided
by dedicated components (or services), communicating via
a service infrastructure. These services provide their func-
tionality exclusively via standardized interfaces. Instead of
requesting data directly, this approach replaces the tight cou-
pling at data level by a flexible dependency on loosely cou-
pled services. The TSB-approach for functional integration
relies both on a Service Oriented Architecture (SOA) as well
on an integration concept, built on standardized encodings
and protocols provided by Sensor Web Enablement (SWE).
A SOA is determined by a layered architecture, consisting

Fig. 2. Layers of a SOA in context of GITEWS.

basically of a resource, service, orchestration, and applica-
tion layer as shown in Fig. 2 (McGovern et al., 2001; Josuttis,
2007).

Functionality (e.g. alert, task, notify, observe) required
by the business processes on the application layer (e.g. De-
cision Support System) is provided by interoperable ser-
vices (e.g. SAS, SPS, etc.) that follow common service
oriented principles, as service contract, loose coupling, ab-
straction, reusability, autonomy, statelessness, discoverabil-
ity, and composability (Erl, 2008). A SOA also orches-
trates services to execute specific processes of the applica-
tion domain, which might be supported by execution lan-
guages or workflow engines. The conception of autonomous
and loosely-coupled services enables the compilation and re-
using of services within the production of manifold multi-
hazard systems.

Nevertheless, a SOA does not specify the actual services,
their interaction, and accompanying data model. Instead of
defining our own service suite in GITEWS we adopted ser-
vices of the Sensor Web Enablement (SWE) initiative, which
aims “to enable all types of [. . . ] sensors [. . . ] to be acces-
sible and, where applicable, controllable via the Web” (Botts
et al., 2007).

The general applicability of SWE for sensor based natural
hazard systems was shown in early case studies and imple-
mentations (Walkowski, 2005; Moodley et al., 2006; Chu et
al., 2006). In addition, the SWE framework is functional
complete for the TSB: only a set of four SWE services are
sufficient to cover the required functionality as demonstrated
in Simonis (2008), or in several projects (as by Kunz et al.,
2009 or Kobialka et al., 2010). Furthermore, at the time when
GITEWS started in 2006, no other open XML standard ex-
isted, which specified sensors and their supporting service
infrastructure by means of practicable interfaces as well as
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Fig. 3. GITEWS architecture.

a data/metadata model (Klopfer, 2005). And the activities
by the Open Geospatial Consortium (OGC1) promoting the
evolving standard were also very promising.

Unfortunately an open and sufficient SWE implementa-
tion did not exist back then. For the Sensor Observation Ser-
vice (SOS) were only early implementations available (e.g.
52◦ North2). But, not designed for production environments,
low performance in data ingestion, and shortcomings of the
repository led to the decision to implement the services by
ourselves.

The following SWE specifications (OpenGIS) have been
implemented:

– Observations & Measurements (O&M):
model for observations and measurements.

– Sensor Model Language (SensorML):
model for describing sensor systems.

– Sensor Observation Service (SOS):
service for obtaining sensor observations.

– Sensor Planning Service (SPS):
service for tasking sensors.

1The Open Geospatial Consortium, Inc,
http://www.opengeospatial.org/ogc, last access: May 2010.

252North Initiative for Geospatial Open Source Software
GmbH,http://52north.org/, last access: May 2010.

– Web Notification Service (WNS):
service for asynchronous dialogues.

– Sensor Alert Service (SAS):
service for sending alerts.

4 System architecture of GITEWS

The system architecture of GITEWS is depicted in Fig. 3.
Following a SOA the system architecture is separated into
a sensor, service, andapplication layer. A separate orches-
tration layer was omitted (as proposed for common SOAs)
since the four SWE services are small enough to be managed
by the client applications (DSS, Registry GUI) directly.

4.1 Sensor layer

Sensors and sensor systems are located at the Sensor Layer,
providing data for the warning system. This data contains
typical sensor measurements from tide gauges, buoys or
ocean bottom units (OBU), such as sea water heights, mete-
orological data, or system health parameters. Moreover, the
data for the warning system is also comprised of more com-
putationally intensive events, such as detected earthquakes
from the Seismic System or land displacements from the
Continuous GPS System (CGPS).
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Tide gauges and buoys, together with the OBU, are under-
stood as sensors. They are distinguishable measuring units
deployed in the field, whereas the Seismic System and the
CGPS are understood as sensor systems: extensive comput-
ing systems that process data of entire sensor networks. The
internal details of sensors and sensor systems as well as their
dependencies among themselves are irrelevant for the inte-
gration architecture and is not shown (e.g. processing GPS
data of the buoy by the CGPS system). In the following the
distinction betweensensorandsensor systemis omitted for
readability.

In order to enable the integration of all sensors the TSB re-
quires two interfaces: theDispatcherand aSensor Manager
interface. The Dispatcher interface is the receptacle for re-
ceiving all incoming sensor data, including sensor measure-
ments as well as sensor alerts (e.g. sea surface heights, water
anomalies or detected earthquakes). On the other hand, the
Sensor Manager interface is used for managing and tasking
sensors by the TSB. For example, a sensor may be set to a
higher acquisition rate mode for near real time processing
(called: “Tsunami Mode”) by this interface.

Regarding the technical integration both interfaces should
be designed as simply as possible, at least on protocol
level. They should be independent of the different pro-
prietary data formats and behaviors of the sensors. Con-
sequently, the Dispatcher interface is designed as a simple
message receiver, accepting arbitrary Java Message Service
(JMS) messages (currently only text and byte messages) and
the Sensor Manager interface is designed as an arbitrary
synchronous TCP/IP command interface. Additional sen-
sor adapters (JMS-Adapter, Buoy Manager, etc.) are cre-
ated to enable the sensors to communicate via these inter-
faces. As a result the integration effort itself is “minimally
invasive” on the sensor side. The more difficult task of se-
mantic integration takes place inside the TSB via the concept
of “plug-ins”.

4.2 Integration layer

The integration layer contains the TSB serving as the integra-
tion platform. The TSB provides interfaces up to the appli-
cation layer comprising the four SWE services (SOS, SAS,
SPS, and WNS) and interfaces down to the sensor layer com-
prising the generic Dispatcher Topic and the Sensor Manager
interfaces.

The TSB was realized as a single deployable component
including all services of the integration layer (excluding the
database system). Separated stand-alone SWE services were
not necessary in GITEWS, but nevertheless are supported
and can be deployed by means of the TSB implementation.

Furthermore, the TSB also implements the Sensor Reg-
istry, responsible for all sensor metadata management in
GITEWS. The registry, for example, contains metadata (data
about data) for discovering new or modified sensors (via

SWE services), along with their complete interface descrip-
tion (sensor name, station codes, description of data streams,
etc.).

4.3 Application layer

Finally, the client applications reside at the topmost layer.
The most important of these applications is the Decision Sup-
port System (DSS), which aggregates the sensor data further
to highly aggregated information products to assist the Chief
Officer on Duty in his/her decision whether a tsunami warn-
ing should be disseminated. Additionally, also the Registry-
GUI has access to sensor metadata through the TSB.

5 Sensor integration platform TSB

While the previous chapters have explained the functional
and non-functional requirements of the TSB, the next sec-
tion presents the architectural and technical details of the in-
tegration platform. The internal architecture of the TSB –
seen from a logical viewpoint (Kruchten, 1995) – reflects the
main use cases of the sensor integration platform (Fig. 4).

Logically the TSB is divided into five components:

– The Processingcomponent receives incoming data as
messages. The data is analyzed, processed, and stored
into the database. Registered applications are then in-
formed about the new available data or about system
alerts (by WNS resp. SAS).

– TheProvisioningcomponent provides access to all sen-
sor data for client applications in terms of the SOS in-
terface.

– TheTaskingcomponent enables the uniform control of
sensors. The Tasking component forwards requests to
the sensor specific command adapter (via Sensor Man-
ager Interface) and forwards the (asynchronous) results
back to the client application.

– TheRegistryis the central provider for all sensor meta-
data in GITEWS. It also provides functions for the man-
agement of sensor metadata (create, modify, delete).
The Registry stores its metadata into the Database.

– The Databaseacts as a general storage for all sensor
data and metadata.

5.1 Design and implementation decisions

The final architecture of the TSB is determined by several
design and implementation decisions which are presented be-
low.
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Fig. 4. Logical architecture of the TSB.

5.1.1 Messaging for data and alert transportation

In GITEWS, almost all data transportation between dis-
tributed components happens on basis of asynchronously
message oriented middleware (MOM), especially for the
asynchronous services SAS and WNS. For example, sensor
data is first wrapped by messages and then sent to the TSB.

The JMS technology has been chosen as MOM because
of its elaborate and practicable interface as well as its robust
and high performance implementation by JBoss Messaging.
Another option for an asynchronously messaging protocol
would have been XMPP. But as stated in Shigeoka (2002),
the XMPP standard does not define – in comparison to JMS
– any Quality of Service (QoS) features for message deliv-
ery. This is left to the XMPP implementations, therefore not
standardized, and might vary between implementations. Be-
cause of keeping the TSB free of any proprietary extensions,
JMS/JBoss was chosen for its defined (by the standard) and
guaranteed (by the implementation) message delivery. Con-
sequently we intentionally departed from SWE’s recommen-
dation for using XMPP as communication protocol for the
SAS. (Nevertheless, for WNS the protocol can be chosen
arbitrarily). In particular the following JMS features have
been used: Transactionality, Durable Subscription, Server
Side Filtering, Message Priority, and Preserving of Message
Sequence.

5.1.2 Data access and sensor control by web services

Sensor data is stored persistently in a database accessible
via the SOS. For tasking and managing sensors the SPS is
used. Both services are implemented as standard web ser-
vices (servlets), following the synchronous request/response
pattern over HTTP.

5.1.3 Reliable data transport

Reliable data transportation is a crucial requirement for the
TSB. It is realized by a reliable transport chain from sensors
up to the application layer by means of JMS. To be more
precisely: The reliable transport chain begins with the JMS
adapter, not with the sensor itself. This technology guaran-
tees that messages sent to the Dispatcher interface are sent
once, and only onceto clients of the application layer (e.g. to
avoid time consuming detection of data duplicates). This fea-
ture is additionally supported by durable subscription, which
ensures that even if the client is currently unreachable (in
case of downtime, etc.), messages will be delivered later
when the client reconnects.

5.1.4 Transactional processing

The processing of incoming messages is composed of several
activities inside the TSB, all executed in one single trans-
action. This guarantees the correct and coherent processing
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Fig. 5. Processing of sensor data.

workflow for every incoming message. In case of an error,
the entire workflow is rolled back, retried again for several
times, and if the error cannot be cleared the faulty message
ends up finally in a dead letter queue.

The implementation of the TSB does not use distributed
transactions. In particular the JMS-Adapter is not part of a
transactional process, because of performance criteria during
the long commit phase. Nevertheless, the JMS-Adapter is
robust: i) incoming messages are buffered persistently, ii)
automatic communication retries in case of network error.

5.1.5 Sensor integration by means of plug-ins

To integrate a new sensor type, its specific semantic and data
format has first to be incorporated into the TSB. This is done
in a flexible and straightforward way by a plug-in mecha-
nism, which extends the default processing sequence depend-
ing on the actual sensor type (Sect. 4.3).

5.1.6 TSB as a Java enterprise application

The operational requirement for a robust, scalable, and main-
tainable implementation using standard and proven technolo-
gies has been met through the use of Java EE together with
JBoss as implementation and application framework. Ac-
cording to this technology, the TSB is completely imple-
mented based on Enterprise Java Beans (EJBeans) and is de-
ployed and executed as a single enterprise application com-
ponent (* .ear ) onto the JBoss application server.

The next sections provide a detailed description of the TSB
along the logical components mentioned above. The notion
“bean” is frequently used later on and denotes EJBeans only,
i.e. Java classes managed by an application server.

5.2 Processing of sensor data

The processing of all sensor data is shown in Fig. 5. The cen-
tral class is the Dispatcher Bean, which consumes, analyzes,
processes, stores, and publishes (via Publisher Beans) all in-
coming sensor data. The methods of the Dispatcher Bean are
generic and defined by plug-ins (see Sect. 4.3).

The content, format, frequency, and size of the incom-
ing sensor data (data stream) is in general not restricted, as
long as matching plug-in exists. Typical input streams are
frequently delivered binary sensor readings as well as infre-
quent and complex earthquake bulletins in XML (SeisComP-
ML on basis of QuakeML). Raw data or multi-media files
were not intended for the TSB.

The Dispatcher Beans expects all data to be delivered as
JMS messages. For this purpose specific JMS-Adapters ex-
ist. They enable the communication between the proprietary
sensors and the TSB on protocol level. They also add neces-
sary information about the origin of the sending sensor (e.g.
type of sensor data or unique sensor identifier).

The main task of the Dispatcher Bean is to perform the
specific processing according to the delivered message type
(“dispatching”). Thus, for each sensor data type a specific
instance of the Dispatcher Bean type exists. The technical
assignment of an incoming message to its processing Dis-
patcher Bean is then automatically performed by the JMS
message broker: To assign the incoming message to its
appropriate Dispatcher Bean, the JMS feature of “server
side filtering” is used (messageSelector ). However, the
JMS usual selector mechanism (byTopics resp.Queues)
is used on a coarser level to distinguish the different sub-
scriber/publisher interfaces (Dispatcher , WNS, SAS, Log ).

The processing results in a set of observations representing
the actual sensor data. These observations are implemented
as entity beans (�Entity Bean �) capable of being stored
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automatically into the database (by Java EE’s container man-
aged persistence).

At the end of the processing, either for general notifica-
tion or as a result of sensor alerts, messages are sent up
to the application layer by the WNS PublisherBean (e.g.
NewDataAvailable ) or by the SAS PublisherBean (e.g.
SeismicSystemAlert ), respectively.

In addition to the reliability of the processing above, one
also obtains important operational qualities by using the Java
EE platform, namely:

– transactional processing of sensor data,

– concurrent processing of all data streams,

– concurrent processing of all messages in a single data
stream,

– pooling of Dispatcher Beans for efficiency,

– pooling of database connections.

Regarding the concurrency it is worth mentioning that con-
current processing is not useful for certain data streams
where the sequence of incoming messages must be pre-
served. In these cases we use JMS Queues instead.

An example for a Seismic Alert sent by the SAS Pub-
lisher Bean is shown in Fig. 6. An earthquake was detected
at samplingTime , together with the following earthquake
source parameters:numberOfStations , originTime ,
longitude , latitude , depth , magnitude , andrmsErr .
The XML example is simplified for readability.

5.3 Plug-in concept

The design of the TSB has to be flexible in order to meet
the requirement to integrate new sensor types with their new
and unforeseen data formats and behaviors. This flexibility
is realized by so calledplug-ins, defining a sensor specific
data processing along the Dispatcher’s standard execution se-
quence. The standard execution sequence is made up of five
activities:

– Initially the FormatReader parses and maps all sensor
data into an internal data representation. It also acts as
filter reducing the stream to relevant data only.

– Then thePreProcessor performs all required process-
ing activities on the sensor databeforestoring it to the
database. The intermediate step is necessary because
intended database constraints, e.g. unambiguity of ids,
would interfere at this stage with the given datasets.

– Then the sensor data is persisted into the database con-
text.

– TheProcessor performs the actual processing exclu-
sively on database data. This processing at a central
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   <SimpleDataRecord> 
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    <field name="numberOfStations"> 
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    <field name="originTime"> 

     <value>2009-08-20T08:50:00.593<value>… 

    <field name="longitude"> 
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Fig. 6. Example of seismic alert.

Fig. 7. Plug-in for tide gauge.

place is necessary since data streams come from differ-
ent sources and need to be merged. For example, buoy
water height streams are corrected by air pressure data
streams.

– Finally the AlertProcessor processes the data to
identify anomalies (annotated by the sensors them-
selves), which are then disseminated as alerts.

The actual processing is hardwired inside the plug-ins and
depends on the stream characteristic. Typically for the TSB
is to process each arriving data package in one piece. For del-
egating their processing workload, plug-ins can call external
services (e.g. Web Processing Service, WPS of OpenGIS),
but restricted by the Java EE architecture plug-ins cannot act
as server.

The execution sequence above is implemented usingre-
source injection(Java EE 5 feature) into the Dispatcher Bean.
Figure 7 shows the concept, based on a tide gauge plug-in.
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Table 1. Deployment descriptor of plug-in.

MessageSelector FormatReader PreProcessing Processing AlertProcessing

SeismicEventStream SeismicReader NullProcessingBean NullProcessingBean SeismicAlertBean
BuoyWaterHeightStream BuoyReader BuoyPreProcessingBean BuoyProcessingBean BuoyAlertBean
BuoyMeteorologicalDataStream BuoyMeteoReader NullProcessingBean NullProcessingBean NullAlertBean

. . . . . . . . . . . . . . .

Fig. 8. Provisioning of sensor data.

The standard execution sequence is realized by consecu-
tively calling four interfaces (FormatReader.load() , . . . ).
To enable dynamic adaption of this execution sequence the
actual executing classes (e.g.TGFormatReader ,. . . ) can-
not be “statically linked”. Instead, the execution classes are
firstly described as named resources inside the Deployment
Descriptor and secondly attached (by name) to the dispatcher
code by means of Java annotations. These resources can then
be provided at runtime to the Dispatcher Bean (injected) by
the Java interpreter. Thus, the behavior of the dispatcher is
changeable at runtime by simply changing the Deployment
Descriptor. On basis of resource injection a plug-in is noth-
ing but a file package, combining the Deployment Descriptor
with its related classes needed for processing.

A typical processing configuration inside the Deployment
Descriptor is shown in Table 1.

For the seismic system (SeismicEventStream ) with its
single data stream, a format reader and a bean for alerting
are configured. Since data processing was already performed
by the seismic system, no additional pre- and processing is
needed (NullProcessingBean ). In contrast to this, the
buoy system produces several data streams, each treated dif-

ferently: for example, the water height stream needs addi-
tional preprocessing whereas the meteorological data stream
does not need any processing. Currently plug-ins for twelve
different data streams have been developed.

5.4 Provision of sensor data

The implementation of the SOS for provision of sensor data
(measurements, alerts, and metadata) is straightforward with
respect to a typical three tier client/server architecture for
web applications (McGovern et al., 2001): a SOS Servlet
for the presentation tier, a SOS Bean for the business logic
tier, and the entity beans for the data tier (see Fig. 8).

The Sensor Observation Service (SOS) is realized as
a simple web service built on top of the Java EE plat-
form. An incoming SOS request is received and parsed
by HTTP connection managing SOS Servlet and then con-
verted from XML into an internal Java structure (by XML-
Beans) representing the SOS request. Finally, the SOS re-
quest (XMLBeanDoc) is transferred to the SOS Bean, which
executes the submitted SOS request according to the SWE
specification:getCapabilities , getObservation , etc.
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In addition to providing data, the SOS Bean also serves as
a Data Access Object (DAO), responsible for the persistence
of data. The SOS Bean decouples Java’s business logic from
the persistence technologies underneath. To accomplish this
decoupling, the TSB uses the Java Persistence API (JPA),
where queries for entity beans can be written directly in
JPQL. For JPA the Hibernate implementation is used. Be-
cause the overhead for creating beans is not practical for large
results sets, for critical cases the JPQL/entity bean mecha-
nism is bypassed by using native SQL.

Figures 9 and 10 show an example for acquiring tide gauge
measurements by the SOS service. In Fig. 9, measurements
of sensor typetideGaugeObservations are requested. In
particular, water heights of the tide gauge stationsade , dur-
ing the time ofbeginPosition andendPosition are re-
quested.

The response is shown in Fig. 10, which contains the time
interval samplingTime , the structure of the delivered data
recordSimpleDataRecord , and the actual measurements
of the tide gaugevalues . Moreover, the token separators
are provided bytokenSeparator , etc.

5.5 Tasking of sensors

The implementation of the SPS for tasking sensors is shown
in Fig. 11. The architecture is similar to the SOS im-
plementation, but is extended by a controller component
(Controller ) for tasking external sensors.

As in the previous subsection, SPS tasks are submitted
via a SPS Servlet and then executed by the SPS Bean.
The SPS Bean should represent a generic sensor type, un-
aware of the actual implementation and specific behavior
of the sensor to be tasked. Therefore, the SPS Bean pro-
vides, according to SWE, common functions for all sen-
sors: providing metadata information (getCapabilities ,
describeTasking ), commanding the sensor (submit ),
and getting the status of submitted commands (getStatus ).

To access a sensor by its native format and protocol,
the request is further forwarded to sensor-specific controller
classes (CGPS-, TideGauge- , andBuoy Controller ), re-
sponsible for all the proprietary communication and control-
ling (hostname lookup, protocol mapping, access list con-
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Fig. 10. Example of SOS response.

trol, etc.). The specific controller class is then determined
by a registry look up, thus maintaining the relationship be-
tween sensor and controller. For example, the CGPS system
is commanded by a custom protocol based on TCP/IP level,
whereas the tide gauge and buoy managers are realized by
web services, capable of exchanging SOAP messages, spec-
ified by a WSDL description.

As an example of a SPS request Fig. 12 shows the com-
mand to set the buoysu01 into a higher sampling mode
(tsunamiMode=true ). However, the buoy can not perform
and confirm the request immediately, since the fact that satel-
lite links must established and subsystems must be initialized
first. Therefore the final confirmation has to be postponed un-
til the buoy is fully functional and can reply asynchronously
via the WNS channelnotificationTarget .

Future implementations of the TSB should also apply the
generic plug-in concept (Sect. 4.3) for sensor tasking, super-
seding the registry/controller look up mechanism presented
here.

5.6 Management of sensor metadata

The registry is the central authority for sensor metadata in
GITEWS. It provides metadata of all sensors, including static
information necessary for discovering and using a sensor (see
Fig. 13).

The registry aims at two things: Firstly, the registry is the
central metadata provider for all GITEWS applications. The
client applications have access to the metadata via SOS and
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Fig. 11. Tasking of sensors.
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subsystems must be initialized first. Therefore the final confirmation has to be postponed until 1 

the buoy is fully functional and can reply asynchronously via the WNS channel 2 

notificationTarget.  3 

<Submit> 

 <notificationTarget> 

  <notificationID>WNS</notificationID> 

  <notificationURL>jnp://tsb-prod:1099</…> 

 </notificationTarget> 

 

  <sensorParam> 

   <sensorID>urn:…:buoy:station:su01</…> 

   <parameters> 

    <InputParameter … ="tsunamiMode"> 

     <value> 

      <Boolean> 

       <value>true</value> 

      </Boolean> 

     </value> 

    </InputParameter> 

   </parameters> 

  </sensorParam> 

</sps:Submit> 

Figure 12: SPS Request for Setting the Tsunami Mode  4 
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Future implementations of the TSB should also apply the generic plug-in concept (4.3) for 6 

sensor tasking, superseding the registry/controller look up mechanism presented here.       7 
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Fig. 12. SPS request for setting the tsunami mode.

SPS according to the SWE specification. Secondly, the reg-
istry enables the direct manipulation of metadata, which in-
cludes the creation and removal of sensors (“bringing into
existence”). A dedicated user interface (Registry GUI) exists
for managing the metadata.

A typical use case for the registry thus might consist of the
following individual steps:

1. Get the list of all available offerings.
An “offering” is the topmost data category and repre-
sents a sensor type in GITEWS.

2. Get the list of available sensors providing that offering.

3. Get the list of available data streams for that offering.
An “offering” can contain several data streams (phe-
nomenon).

4. Get the description of the sensor itself in SensorML.

The metadata for steps 1–3 are delivered by the SOS in a sin-
glegetCapabilities() response. The metadata for step 4
is delivered by the SOS in adescribeSensor() response.

Figure 14 shows an excerpt of offerings in GITEWS pro-
vided bygetCapabilities .

As an example Fig. 15 shows all available tide
gauges, i.e. the list of sensors providing the offering
tideGaugeObservations .

Every sensor (= “procedure” in the notion of SWE) is iden-
tified by its unique Unified Resource Name (URN). The
URN is composed of: organization, project, marker “def”
for a subsequent definition, marker “procedure” for sen-
sors, classification “tg” for tide gauges, marker for “sensor”
(= station ) or “sensor system” (=system ), and finally the
sensor name (“sade”). Currently over 200 sensors and sen-
sors systems are known by the registry.
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Fig. 13. Managing of sensor metadata.
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… 

Figure 14: Listing of all Available Offerings in GITEWS  14 
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Figure 15: Listing of Available Sensors  1 
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    <component …"…:systemAvailability"/> 
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     … 

Figure 16: Listing of Available Data Streams (Phenomena)  13 
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Finally, the metadata for sensors is shown in Figure 17 (as retrieved by describeSensor()). 15 

Metadata for sensors is reduced to what is technically relevant. An elaborated technical (self-) 16 

description for discovering sensors (e.g. using UDDI) or a human readable approach for 17 

metadata was not intended in GITEWS.  18 
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The getCapabilities request delivers also the available
data streams (composite phenomenon) for the tideGau-
geObservations offering. Figure 16 shows the six streams
for tide gauges:tideGaugeMeteorologicalState , ...,
tideGaugeGPS , and tideGaugeWaterHeight . For the
latter the internal structure is also shown.

Finally, the metadata for sensors is shown in Fig. 17 (as
retrieved bydescribeSensor() ). Metadata for sensors
is reduced to what is technically relevant. An elaborated
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<SensorML> 

 <member …> 

  <System> 

   <characteristics> 

    <SimpleDataRecord> 

  <field name="shortName">… 

  <field name="longName">… 

  <field name="stationCode">… 

  <field name="stationType">… 

  <field name="systemType">… 

  <field name="geographicDescription">… 

  <field name="responsibility">… 

  <field name="reliability">… 

  <field name="gpsForSensorAvailable">… 

  <field name="taskable">… 

  <field name="integratedIntoSimulation">… 

  <field name="integratedIntoTSB">… 

 …       

Figure 17: Sensor Metadata in GITEWS 1 
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Moreover, SWE’s applicability was also proven by the DSS, where SWE is used as interface 11 
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Fig. 17. Sensor metadata in GITEWS.

technical (self-) description for discovering sensors (e.g. us-
ing UDDI) or a human readable approach for metadata was
not intended in GITEWS.
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6 Results

6.1 Applicability of SWE

An important motivation for choosing SWE was to get a ma-
ture sensor and data model as a solid conceptional fundament
for implementing the TSB. SWE has satisfied this require-
ment in GITEWS well. Indeed, the SWE features for char-
acterizing sensor data (by offering, procedure, phenomenon,
event time, and feature of interest) were general enough for
using them also as super keys for our relational database
model (flexible key-value tables). Consequently, new sen-
sor data types fit into the TSB as long as they fit into SWE
data model. Moreover, SWE’s applicability was also proven
by the DSS, where SWE is used as interface standard for ac-
cessing huge geodata, for sensor data management, and for
map display and communication with the GITEWS simula-
tion system (Raape et al., 2010; Behrens et al., 2010).

Although the data model of SWE is perfect for time series,
it is not well suited for complex data structures. Confined to
SWE’s fixed metamodel for observations it is not possible
to deviate from it. For example, it is not possible to build
nested observations needed for hierarchical data structures,
or to add a unique identifier for retrieving named observa-
tions, or to introduce a second independent time dimension
for time series.

The complexity of the SWE standards itself can be tedious.
For example the TSB uses only a subset of SWE, but which
is made up of twelve different XML Schemata with a total
of over 1000 defining XML Elements. As a consequence a
great deal of effort was required for tailoring SWE down to
find a proper and compliant SWE subset, which serves as a
practical dialect for GITEWS. Our SWE dialect (“best prac-
tices”) comprises first of all structural patterns for describing
data, as for time series, data records, data types, and a URN
nomenclature for names, units, and identities. Simple behav-
ioral patterns are provided as well. By means of this dialect
the entire interface between sensors and clients was specified
and is serving as a binding contract between TSB and DSS.

Another result is that GITEWS’ sensors do not “speak”
SWE natively, simple as a matter of implementation and
bandwidth costs. But also because the focus of sensor ex-
perts is different than SWE, who favor their own (binary)
standards, which satisfy their domain requirements in terms
of functionality and transmission efficiency best. The inter-
disciplinary integration work is therefore left to a sensor spe-
cific processing by adaptors and plug-ins of the TSB.

The behavioral services of SWE (SPS, SAS, and WNS)
are simple and generic, but sufficient enough for GITEWS.
Thus, the ability of the TSB for sensor integration is only
limited by SWE’s data model, taken into account SWE’s un-
suitability for binary sensor protocols (for the simple reason
that SWE uses XML and HTTP).

Our implemented SWE services (SOS, SPS, SAS, and
WNS) follow the specifications. But as they were not formal

tested by the OGC1 they cannot be marked as “compliant”.
Nevertheless, our SWE services deliver valid XML docu-
ments according to the schemata.

6.2 TSB as enterprise application

The TSB was finally implemented as a single Java EE/JBoss
application using important QoS features of this framework,
such as reliable messaging, transactional processing, con-
tainer based persistence, scalability, connection pooling, and
monitoring.

But Java EE was not set from project start; it was rather
a result of several prototypes. Because only Java and JMS
were obligatory, early TSB implementations were made up
of several stand-alone services (SOS-server, SAS-server,
database, etc.) linked together only by JMS middleware,
without Java EE and EJBeans. Though suitable for prototyp-
ing these implementations did not meet operational require-
ments: especially they lacked in performance and maintain-
ability. During further development the components of the
TSB were migrated into the Java EE framework and were
consolidated as one single deployable Java EE application,
gaining the required robustness for the operational field.

6.3 System operations

Although not all commissioned sensors deliver live data at
present, the TSB is going to satisfy the operational require-
ments at the final project stage. Performance tests show that
the TSB can process and store about 3500 sensor samples per
second, six times more than the expected sensor data peak
in case of a tsunami. The data delivery of the SOS is ca-
pable of providing 100 000 sensor samples in three seconds,
satisfying GITEWS’ requirements very well (database filled
with 140 million samples, consuming 30 GiB). The required
performance will even hold for the integration of external
sensors, which increases the number of sensors up to 200
(tide gauges of the Intergovernmental Oceanographic Com-
mission – IOC, Indonesian tide gauges, etc.).

Since 2009 the TSB operates at the BMKG3 tsunami warn-
ing center in Jakarta, with an availability of 0.996 for the
last half of 2009. The ongoing activities for hardware redun-
dancy will increase the availability further.

7 Conclusions

This paper has presented the concept, architecture, and im-
plementation of the integration platform TSB. The SOA ap-
proach has partitioned the system GITEWS into different
layers, following the principle ofseparation of concerns.
The TSB, as intermediate integration platform, enables both
a flexible integration mechanism for sensors as well as a sta-
ble and uniform access for the client applications.

3Badan Meteorologi Klimatologi dan Geofisika,
http://www.bmkg.go.id, last access: May 2010
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By applying SWE as a service framework, the project
included a suitable set of services and an appropriate data
model from the start. This avoided the need for develop-
ing our own service models and data specifications (and
the resulting time-consuming negotiations among the project
partners). Although only perfect for time series, the matu-
rity of the OGC1 standards for SOS, SAS, and O&M pro-
vided benefit to the project by stabilizing the interfaces at
an early project stage. This results in a service and sen-
sor specification that is “of one piece”. The aim to provide
a universal and standardized sensor model by the TSB was
achieved.

The internal architecture of the TSB is composed of four
(logical) components, reflecting its main use cases. This
clear functional decomposition enables a straightforward im-
plementation by EJBeans, in which each use case is imple-
mented by a small set of beans (message, session, or entity
beans). Finally, the plug-in mechanism realizes the flexible
integration of new sensor types at runtime by defining sensor-
specific data processing.

The TSB is entirely implemented on basis of Java EE tech-
nology satisfying the demand of a mission critical tsunami
early warning system. The TSB has proven its reliability and
robustness at the BMKG3 tsunami warning center in Jakarta,
where it has been in operation since 2009.

The TSB is not confined to GITEWS only. The TSB
is used by another decision supporting systems DEWS4,
which focuses the interoperability of distributed tsunami
early warning systems. The TSB also serves for the moni-
toring system CAWa5, which provides regional hydrometeo-
rological data in real-time via satellite communication.

Appendix A

Glossary

CGPS Continuous GPS System
DSS Decision Support System
EJBeans Enterprise Java Beans
Hibernate JPA Implementation
Java EE Enterprise Edition
JBoss JBoss Application Server
JBoss Messaging JMS Implementation for JBoss
JMS Java Message Service
JPA Java Persistence API
JPQL Java Persistence Query Language
OBU Ocean Bottom Unit
O&M Observations and Measurements
OpenGIS Standards Standards of OGC1

4Distant Early Warning Systems,http://www.dews-online.org,
last access: May 2010.

5Water in Central Asia (CAWa),http://www.cawa-project.net,
last access: May 2010.

QuakeML XML representation
of seismological data

SensorML Sensor Model Language
SAS Sensor Alert Service
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOS Sensor Observation Service
SPS Sensor Planning Service
SWE Sensor Web Enablement
TSB Tsunami Service Bus
UDDI Universal Description, Discovery

and Integration
URN Unified Resource Name
WNS Web Notification Service
WPS Web Processing Service
WSDL Web Services Description Language
XMLBeans XML Java Binding
XMPP IETF RFC 3920-3923: extensible

Messaging and Presence Protocol.
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