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Abstract. A new tsunami forecasting method for near-field
tsunami warning is presented. This method is applied in the
German-Indonesian Tsunami Early Warning System, as part
of the Indonesian Tsunami Warning Center in Jakarta, In-
donesia. The method employs a rigorous approach to min-
imize uncertainty in the assessment of tsunami hazard in
the near-field. Multiple independent sensors are evaluated
simultaneously in order to achieve an accurate estimation
of coastal arrival times and wave heights within very short
time after a submarine earthquake event. The method is
validated employing a synthetic (simulated) tsunami event,
and in hindcasting the minor tsunami following the Padang
30 September 2009 earthquake.

1 Introduction

The 2004 Great Andaman-Sumatra Tsunami spawned a large
number of efforts to establish tsunami early warning capac-
ities, to perform tsunami research, and to conduct mitiga-
tion measures. Indonesia received a major contribution from
the German Federal Government, which led to the devel-
opment, installation and implementation of a new tsunami
early warning system (TEWS) in Jakarta. The German-
Indonesian Tsunami Early Warning System (GITEWS) de-
velopment consortium consists of several large research lab-
oratories and university partners in Germany and a number
of research and government agencies in Indonesia (Rudloff
et al., 2009). The GITEWS system is part of the Indonesian
Tsunami Early Warning System (InaTEWS) at the Agency
for Meteorology, Climatology and Geophysics (BMKG) in
Jakarta. One of the design guidelines for the GITEWS sys-
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tem was to enable the Indonesian authorities to give pre-
cise, localized warning information after only a few minutes
(definitely less than 10 min), since many tsunami sources
are very close to the Indian Ocean coast of the Indonesian
archipelago.

A key to precise short term information under the con-
dition of high uncertainty in the first few moments after an
earthquake is the utilization of multiple sensor information
and synthesis of this information by means of advanced sim-
ulation.

1.1 A review of current approaches

In spite of the large number of tsunamis that hit the Indone-
sian coasts, until 2004 no dedicated operational TEWS was
established in or around the concerned area. The two best es-
tablished and long-time operational systems are maintained
by the United States (with two sites at the Pacific Tsunami
Warning Center, PTWC; and the West Coast and Alaska
Tsunami Warning Center WCATWC), and by Japan (at Japan
Meteorological Agency, JMA). These two systems follow
very distinct approaches to tsunami early warning. While
the JMA system faces a similar situation as InaTEWS, i.e.
sources very close to the coast with little time for effective
warning, the PTWC system is designed to give accurate in-
formation, including inundation forecasts for densely pop-
ulated areas on US territory, mostly far from the tsunami
sources (Lautenbacher, 2005).

JMA therefore approached the problem of near-field
tsunami warning, by deriving an estimation of wave heights
for coastal regions (mostly administrative districts) based
on earthquake parameters, which are measured with a very
dense network of seismic sensors in a short time (Furumoto
et al., 1999). Based on averaging assumptions and indica-
tions from the seismic system on location and depth of the
earthquake, pre-computed scenarios are linearly interpolated
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to yield wave heights at control points in 50 m water depth
close to the coast. From these control points, using heuris-
tic formulae (Green’s law) coastal wave heights are derived
and used for warning level information. This approach gives
a relatively large number of false positive warnings, since
the estimation of the tsunami source is only based on pri-
mary seismic parameters like location, magnitude and depth.
However, the rationale behind this approach is to issue po-
tential hazard information quickly and to verify (or falsify)
the warning based on wave gauge measurements and give
cancellation information as soon as possible. The system has
been operational and effective for almost 10 years.

In contrast to this approach, PTWC relies heavily
on tsunameter (deep ocean assessment and reporting on
tsunamis, DART) measurements, installed approximately
half an hour travel time from potential sources. A number
of pre-computed unit sources with linear wave propagation
scenarios is linearly combined, based on earthquake parame-
ters and – when available – tsunameter readings, evaluated by
a linear inversion procedure (Wei et al., 2008). The result is
used for travel time information and preliminary wave height
information, as well as initial condition for local real-time
inundation simulations for certain areas of interest. From its
design it is obvious that this approach intends to trade re-
sponse time for better accuracy.

Several other approaches, including the formerly used sys-
tem of BMKG in Indonesia use similar techniques or mix-
tures of the above two. Many even simpler systems rely
on just a decision matrix for tsunami early warning and do
not even give localized warnings. The Indian Ocean tsunami
warning system operated by the Indian National Center for
Ocean Information Services (INCOIS) resembles the PTWC
system to some extend, without using the real-time inunda-
tion models. The Australian System jointly operated by Bu-
reau of Meteorology (BoM) and Geoscience Australia (GA)
is also similar, but renounces to use an inversion of tsuname-
ter data (Greenslade et al., 2007).

1.2 Caveats and ideas

From the above description of current tsunami warning ap-
proaches we can defer two insights. Currently, one can ob-
tain very fast but inaccurate warning information. On the
other hand, frequent false positive warnings render a warning
system useless when end-users start to mistrust the alert. If
accurate information is required, then time is needed for in-
version and online computations. However, due to the short
time between rupture and first wave arrival at the coast, for
near-field tsunami warning there is no choice to rely on the
lengthy inversion procedure so far employed in TEWS.

Time is one problem of near-field tsunami warning. An
other problem is high sensitivity against the source mech-
anism. While in the far-field case, a source can be de-
scribed by primary seismic parameters such as magnitude,
epicenter and directivity (Okal, 1988; Gica et al., 2007), reli-

Fig. 1. Top: two hypothetical tsunami sources corresponding to
the same magnitude (Mw=8.5) and epicenter shown by a star. The
centroid of the scenario on the left lies some 50 km further west.
Bottom: inundation area corresponding to the two different source
models off Padang (zoomed area depicted as square in upper panels)
showing that inundation in the near-field case sensitively depends
on details of the slip distribution.

able tsunami prediction in the near-field requires much more
detailed source characterization including fault geometry, ex-
act position, orientation and heterogeneous slip distribution
(Geist and Dmowska, 1999; Geist, 2002). Moreover, pecu-
liarities of the off-shore local bathymetry become extremely
important as well (see e.g. the difference in the December
2004 Tsunami and the March 2005 earthquake inGeist et
al., 2006). An example is given in Fig.1. The two hy-
pothetic sources have the same epicenter off-shore Padang
(marked with a star), same magnitude and direction, but their
centroids, i.e., positions of maximal slip, lie some 50 km
apart from each other. Additionally, bathymetry character-
istics off-shore Padang (Mentawai islands) introduce very
strong non-linearity to the tsunami propagation. Resulting
inundations differ dramatically for the two scenarios. Thus,
false positive warning would lead to major evacuation efforts,
causing a lot of collateral damage without any inundation.
On the other hand, a false negative would cause no warning
with half the city inundated.

The basic idea of the new GITEWS approach is to use
more than just the seismic and far field tsunameter informa-
tion in order to reduce uncertainty on the tsunami source and
derive an accurate forecast in short time. In particular, real-
time GPS measurements of the earth crust displacement and
wave gauge information (and here most prominently arrival
time information) can beneficially be used in this context
(Sobolev et al., 2007).

In order to cope with the high sensitivity, as well as the
timing restriction, an analog method with pre-computed sce-
narios and a multi-sensor selection approach is taken as
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means to solve the inversion problem of tsunami early warn-
ing:

Given measurements, what is the tsunami wave
situation, and how will it evolve in the future?

Analog methods have been used in meteorology for quite
some time, and are still in use for hurricane track forecast
(e.g.Hope and Neumann, 1970). In strongly nonlinear dy-
namics, analog forecast methods have been shown to be in-
appropriate. But in tsunami forecasting the general wave
propagation behavior is predominantly linear, allowing for
a representer method to be valid. The strongly non-linear
near shore wave interaction (note that this is not the general
wave propagation) prevents the superposition of waves (or
linear combination of scenarios as performed in the far-field
case), thus giving an additional argument for using an analog
method, which provides a best matching (single) representer.

By means of combining several independent indications of
a tsunami phenomenon, i.e. seismic information, co-seismic
crust deformation measurements, and direct wave measure-
ments by deep ocean and coastal gauges, uncertainty on the
rupture can be reduced to give more accurate forecasts.

1.3 Outline of presentation

This article describes the principles of uncertainty reduction
by independent sensor information for precise early warning
information. The main ingredients for this approach are a
well validated and accurate mathematical simulation model
for the rupture source mechanism and tsunami wave prop-
agation and inundation; a multi-sensor matching approach,
based on well-behaved distance norms; a model for uncer-
tainty propagation and handling during the forecast process;
and an efficient implementation of these methods.

In the following section, we will develop a model for deal-
ing with uncertainty. This is a simplified approach, which
is aiming at operational efficiency and ease of use, even in
an automatized system. Section3 addresses the types and
utilization of diverse sensors, including the derivation of a
multi-sensor mismatch norm for measuring thedistancebe-
tween reality and a pre-computed scenario. Section4 gives a
brief overview of how to implement the previously described
methods in an operational environment, adhering to mod-
ern system design standards. Results are presented based
on a simulated tsunami events as well as a real event of
30 September 2009 in Sect.5, before we draw conclusions.

2 Dealing with uncertainty

The key to accurate near-field tsunami warning is uncer-
tainty. The problem to be solved can be formulated:

Given a set of uncertain data, derive a forecast,
which sensitively depends on the given data.

This question has to be formulated in mathematical terms.

Fig. 2. Simple model for uncertainty propagation. The balls repre-
sent uncertainty regions.

2.1 A model for uncertainty propagation

To start the mathematical formulation, we can write a fore-
cast functional

F : x 7→ y = F(x); x ∈ {Data}, y ∈ {Forecasts}. (1)

F maps given data (e.g. measured earthquake parameters) to
a forecast (e.g. wave heights at coastal points of interest).

In order to take account for the uncertainty, we will con-
sider a set of possible (uncertain) input data.F then acts
on this set and generates a set of corresponding output val-
ues (i.e. forecasts). Let us denote byX the space of possible
input data,x a member of that set, representing the theoreti-
cal exact measurement,θx the tolerance or uncertainty radius
(aroundx). In other words we have a subset

N (x) =Nθx (x) := {ξ ∈ X : ‖ξ −x‖ ≤ θx} , (2)

containing all possible inputs, under the uncertainty con-
straint.

In order to assess the influence of the input uncertainty
on the forecast, we need to apply the forecast functional on
all elements ofN (x). Under reasonable assumptions on the
regularity ofF we can formulate the following statement:

‖N (x)‖ < θx ⇒ ‖F(N (x))‖ < κ ·θx, (3)

where‖N (x)‖ denotes the diameter of the set, orθx denotes
the maximum distance of an uncertain input from the the-
oretical exact measurement. Note thatF(N (x)) is a set of
forecasts. Equation (3) states that if the input data is within a
given uncertainty range, then the forecast uncertainty is am-
plified by a factor 1≤ κ ≤ ∞ (see Fig.2). κ represents the
sensitivity of the problem. Ifκ � 1 the forecast can vary
greatly even for small input perturbations. Ifκ = ∞, no fore-
cast is possible, the problem is ill posed. Therefore, we will
assume thatκ <∞.

We have stated that (3) is valid under reasonable assump-
tions. In particular we have to assume that we consider a
limited forecast period and aκ independent ofF andx. That
means within the forecast period, we are able to linearize the
forecast functional. In other words, the amplification of un-
certainty is bounded.
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Table 1. Common forecast functionals in tsunami forecasting.

Function Description Input Output

R Seismic to Rupture Seismic Params. Rupture Params.
W Rupture to Wave Height Rupture Params. Wave Heights
G GPS Dislocation to Rupture Dislocation Vectors Rupture Params.
H Deep Ocean Wave Height Wave Height Wave Height

to Coastal Wave Height

S∗ Seismic to Scenario Seismic Params. Scenario ID
G∗ GPS Disloc. to Scenario Dislocation Vectors Scenario ID
H∗ Gauge Wave Hgt. to Scenario Wave Height Scenario ID

If F is not just one function but a composition of functions,
we have the following relation. LetF=W◦R, whereW and
R are individual forecast functionals. We can think of the
sequence:R maps seismic observations to a rupture forecast,
which in turn is mapped byW to a forecast on wave heights.
Thus, let

R : X → Y, x 7→ y = R(x),

W : Y → Z, y 7→ z = W(y),

with x ∈ X input for R, y ∈ Y forecast ofR and input to
W , andz ∈ Z the forecast (output) ofW . Let furthermore
‖N (x)‖ ≤ θx be the uncertainty range inX, ‖N (y)‖ ≤ θy the
uncertainty range inY . Since the two functionals are com-
posed, we have thatθy ≤ κR ·θx . Therefore, the uncertainty
range in the composed result

W ◦R : X → Z; x 7→ z = (W ◦R)(x) (4)

takes the form

‖N [(W ◦R)(x)]‖ =‖N (z)‖ ≤ θz ≤ κW θy ≤ κWκRθx . (5)

Thus, in a composition, the initial uncertainty is amplified
multiple times.

2.2 Applying the uncertainty model to tsunami warning

We have to define the forecast functionals now. There are
several common ways to forecast tsunamis and to utilize
these forecasts in TEWS. A straightforward and simple way
is to take seismic parameters as an input and derive a warn-
ing level by means of a decision matrix. The functional thus
maps seismic parameters to warning level:

F :
{
epicenterlat,epicenterlon,magnitude,depth

}
−→

−→ {tsunami advisory,tsunami watch,...}

It is not important to consider the internal mechanics of the
mapping functional. This forecast functional is discrete,
therefore the theory with regularity assumptions is hard to
apply. In any case, the uncertainty amplification also holds

and in particular the uncertainty amplification factorκ can
increase drastically when the sensor regime is close to thresh-
old values determining the change from one warning level to
the other. Other more common forecast functionals are listed
in the upper part of Table1.

In most approaches to tsunami early warning a combina-
tion of seismic information and simulation is used. There-
fore, a combination of functionalsR andW from Table1 is
used. In other words, the forecast functionalF is a composi-
tion F=W◦R.

In the case of near-field tsunamis, both forecast function-
als are sensitive to input uncertainty. The sensitivity factors
κR andκW can be derived by simple Monte-Carlo style sensi-
tivity analysis (Mentrup et al., 2007). In this case, each factor
is large, leading to an almost useless forecast, when combin-
ing these two forecasts (i.e. multiplying two large factors).
This is the reason for so many false positive warnings in tra-
ditional near-field tsunami warning systems.

In the far-field tsunami case, at leastκW is small, i.e. sen-
sitivity on the exact source description for wave height fore-
casts is not high. Therefore, this case works much better with
purely seismic source information. In the PTWC system, the
uncertainty factorκR is also minimized, by not only consider-
ing seismic information for a computation of the rupture, but
also using tsunameter data for reducing the uncertainty on
the exact rupture parameters. Therefore, that system works
very precisely to the expense of lengthened time to acquire
the necessary data.

3 Multiple sensor systems

The idea behind the GITEWS approach is to use multiple
sensor systems in order to reduce uncertainty in the fore-
cast process. Therefore, taking the mathematical uncertainty
model from Sect.2, we will develop a theory of uncertainty
reduction in Sect.3.1. The remaining sections in this chap-
ter will be devoted to describing how to work with multiple
sensor systems in mathematical terms.
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3.1 The principle of uncertainty reduction
with multiple sensors

The main difference of the GITEWS approach is that no
compositions (resulting in uncertainty magnification) are
used. All the forecast functionals have one and the same
goal: to select a tsunami scenario that represents reality. In
particular, we have the forecast functionals described in the
lower part of Table1. Since they all map into the same image
space, they can be combined, as shown in this paragraph.

Of course, GITEWS also uses wave height indicators to
yield forecast information, which in turn are derived from
the scenarios. But it should be noted that the different sen-
sors all describe the same complex system in reality, which
is represented in the scenarios. Each scenario consists of a
tsunami source model as well as a wave propagation and in-
undation model. It should further be noted that this approach
only works, if the models are well validated and represent
physical processes of the real earth system.

We consider the GITEWS forecast functionals

S∗
: S → I, s 7→ S∗(s) = i,

G∗
: G → I, g 7→ G∗(g) = i,

H ∗
: H → I, h 7→ H ∗(h) = i,

wheres, g, andh are inputs from seismic, GPS, and wave
height sensor systems, respectively;i is in the set of scenario
IDs. LetN (s), N (g), N (h) be the uncertainty regions in
the seismic parameters, the GPS dislocation vectors, and the
wave height measurements, respectively.

We assume‖N (s)‖ ≤ θS∗ , ‖N (g)‖ ≤ θG∗ , and‖N (h)‖ ≤

θH ∗ with θS∗ 6= θG∗ 6= θH ∗ , which means the different sensor
systems have different accuracy levels (uncertainties). With
‖IS∗‖ = ‖S∗(N (s))‖ ≤ κS∗θS∗ , ‖IG∗‖ = ‖G∗(N (g))‖ ≤

κG∗θG∗ , and‖IH ∗‖ = ‖H ∗(N (h))‖ ≤ κH ∗θH ∗ respectively,
we further assumeκS∗ 6= κG∗ 6= κH ∗ , i.e. each of the differ-
ent forecast functionals in the GITEWS system may have a
different sensitivity.

Since all functionals map to the same space independently,
they can be combined (instead of being composed). Since all
three functionals map into the set of scenario IDs, the com-
bined result is the set of IDs, which is contained in each of
the imagesIS∗ , IG∗ , IH ∗ , i.e. contained in the intersection
IS∗ ∩IG∗ ∩IH ∗ (see Fig.3).

Thus, uncertainty is greatly reduced by the combined
multi-sensor approach. In fact, each additional independent
sensor system that monitors the same physical phenomenon,
and can be simulated in terms of the same integrated scenario
approach, can reduce the uncertainty.

Note that Fig.3 points to an important prerequisite for this
approach to work: The scenarios need to represent all pos-
sible configurations in reality and need to be validated to
match with real sensor data, since otherwise we might find
ourselves in the situation of an empty intersection. We will

Fig. 3. Combination of multiple sensors and corresponding uncer-
tainty propagation. The intersection of the image areas marks the
set of possible results of a combined matching.

see, however, that this is a theoretical statement. The im-
plementation of the GITEWS system tolerates less rigorous
assumptions.

In the warning process, there will be different states of the
sensor network. At an early state only a fraction of the sen-
sors may have received a signal. Thus not all of the map-
pings can be combined at this time. At a later state, the
data situation may have improved and additional information
leads to reduced uncertainty. The theory, developed above,
assumes a complete picture of the situation. Again in the
implemented system, this is not a prerequisite.

Note further that we will not use the outlined theory for
matching pre-computed scenarios to given data. The theory
developed so far justifies the multi-sensor approach in terms
of uncertainty reduction. We will now develop the multi-
sensor matching procedure.

3.2 Independent indicators – description of sensor
systems and scenarios

We saw in the previous subsection that we need to combine
independent sensor systems in order to reduce uncertainty in
the forecast process. In our approach, three different inde-
pendent systems are considered:

– the seismic system, giving earthquake location, magni-
tude and depth;

– the real-time GPS system, giving 3D dislocation vectors
at sensor positions;

– the wave gauge system, giving arrival time and wave
height time series at sensor positions.

Note that we treat deep ocean tsunameters and coastal wave
gauges as being the same sensor system, since all of these
sensors give the same kind of information, the direct mea-
surement of tsunami waves. Note further that wave gauge
information is useful for uncertainty reduction, even if the
complete wave cannot be assessed. The arrival time of a
wave anomaly can already be a valuable indication of the
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location of the source. Finally, the GPS signal of a smaller
(still tsunamogenic) earthquake may be too weak to be de-
tected. In this case, however, the source is small enough to
be accurately characterized by the seismic parameters. If, on
the other hand, the rupture area is so large that the seismic pa-
rameters are ambiguous with regard to the exact location and
extent of the uplift, then the GPS signal will be significant
enough to contribute to an uncertainty reduction.

If we think of the earth system in a holistic way, then
the above mentioned sensor systems are of course not inde-
pendent. A release of a locking situation causes an earth-
quake and is responsible for the uplift area, which in turn is
uniquely determining the hydrologic wave behavior. How-
ever, in terms of indicators of a phenomenon and in terms of
uncertainty, these aspects of a natural phenomenon are inde-
pendent. They all shed light on the phenomenon from dif-
ferent angles of perspective, and in particular with different
(independent) types of measurements.

On the other side, our scenarios also contain models,
which yield synthetic representations of the above sensor
systems. Our source model relates a certain initial uplift
function to certain seismic parameters and GPS disloca-
tion vectors. The wave propagation and inundation model
adds information on corresponding wave heights and arrival
times.

3.3 Utilizing sensor systems – from measurement
to forecast

In order to use the mentioned sensor systems for the forecast
of tsunami hazard, we will match given data to scenario data.
In contrast to the theory, we will not use explicit forecast
mappings, but will try to define a distance measure from the
truth. For each scenario we will then have a value for its
distance to the true state of the tsunami event.

Before we can start with defining a generalized distance
measure, we will look for individual distances. This is rel-
atively straight forward for most of the data types, present
in the system. Table2 lists the data types and correspond-
ing distance definitions (norms). The only critical distance
metrics are for magnitude and gauge time series. We use
either a direct comparison of the moment magnitude val-
ues, or a comparison of the seismic moments. For time se-
ries comparison we use a simple 1-norm approach. These
choices are still to be validated in the real warning center en-
vironment.

The given individual norms are extended by an uncer-
tainty model. We start with an example. In our scenar-
ios, we assume that the earthquake epicenter is located in
the geometrical center of the rupture area. In reality this
is not generally the case. In fact, the epicenter usually lies
somewhere in the rupture area. Thus, the reported epicen-
ter may correspond to several precomputed scenarios – those
with rupture areas covering the reported location. We do not

Table 2. Data types, sensor systems and individual norms in the
GITEWS system. Indexed values represent scenario data.

Sensor Data type Distance norm
system

Seismic epicenter locationx=(x, y) dloc = ‖x −xi
‖2

epicenter depthD dD = |D−Di
|

moment magnitudeMw dM = |Mw −M i
w|, or

dM = |mo(Mw)−mo(M i
w)|,

where mo(µ) = 10(3/2)µ+9.1

GPS dislocation vectorx=(x, y, z) dGPS= ‖x −xi
‖2

Gauge arrival timet dT = |t − t i |

time seriest = (t1,...,tN) dTS= ‖t − ti‖1

match the exact value of the earthquake location, but the lo-
cation and an uncertainty range. In mathematical terms:

dloc = max
(
‖x −xi

‖2−|U |,0
)
, (6)

whereU is the radius of an uncertainty area. For each data
type an individual uncertainty radius may be used. For ex-
ample, the uncertainty radius for the epicenter is initially es-
timated according to the scaling laws for the rupture dimen-
sions (Wells and Coppersmith, 1994). We apply the same
theory to all the different available data types. Therefore,
uncertainty radii are parameters for optimization.

The uncertainty radii make the system robust against noise
in the data. Note that the multi-sensor approach (in which all
the different data – even though perturbed – need to repre-
sent a physically consistent real event) stabilizes the selec-
tion. Even if the data is noisy (but not too noisy to hide any
signal), the multi-sensor approach allows for reduction of un-
certainty.

After having introduced individual norms and a sensitivity
model in the matching process, we now need to harmonize
the data. First of all, the different norms need to be compa-
rable. In order to achieve that, we will normalize the data,
i.e. we will map them to the unit interval. Note that we are
not interested in the actual values, but we are interested in
the distances. Additionally, we are interested to distinguish
small differences, while a large distance does not need to be
differentiated. Therefore, we choose a non-linear mapping in
the following way:

scal(d) =
2

π
arctan(ν ·d), (7)

whereν is a scaling factor such that approximately 25% of
the possible maximum distance are mapped to the interval
[0, 0.8].
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After these manipulations we are now in the situation that
we can measure distances (between real sensor readings and
scenario data) for individual data types and sensors. These
distances are comparable, since they are all mapped to the
unit interval. Additionally, they consider uncertainty and
noise in the measurement data. It will be the aim of the fol-
lowing subsection to combine the individual distance metrics
to a generalized norm.

3.4 Combining independent sensor systems

In order to combine individual distance norms to a compound
a simple weighted sum approach is used. The seismic system
delivers data already in aggregated form. Individual sensors
(i.e. seismometers) are not directly connected to the simula-
tion system. But for other systems, we need to combine in-
dividual sensors to sensor groups first. In order to be able to
weigh different sensor systems individually, and not overem-
phasize individual sensors, the following compound norms
for the wave gauge and GPS systems are defined:

Dσ =

∑
i=1:Mσ

wi
σ d i

σ , (8)

where σ ∈ {GPS,T,TS} indicates the sensor system/data
type. Here GPS indicates the real-time GPS dislocation vec-
tors, T the arrival times, and TS the wave height time series at
gauges (see Table2). Moreover,Mσ is the number of sensors
available in the sensor network, andwi

σ are weights, defined
by

ŵi
σ =

0, if the sensor is not available;
0.5, if the sensor is not reliable;
1, if the sensor is fully functional.

(9)

Then the weights are normalized (i.e.
∑

i w
i
σ = 1) by

wi
σ = ŵi

σ ·

(∑
i

ŵi
σ

)−1

. (10)

Note that sinced i
σ is a scaled distance norm with values in

the unit interval [0, 1] and since thewi
σ are normalized, the

compound normDσ , defined in (8), has its values also in the
unit interval.

Now, by usingDloc = dloc, DD = dD, DM = dM (see Ta-
ble 2) and Eq. (8), we have defined distance norms for the
six different available data types in the TEWS. It is our aim
to combine these to a generalized distance. Again, this is
achieved by using the weighted sum approach:

D =

∑
S∈{loc,D,M,GPS,T,TS}

WSDS, (11)

whereWS are normalized weights. We will callD themis-
match. Note that the weights can be tuned. In our exper-
iments we found that the mismatch is relatively insensitive
to the fine tuning of weights. However, the weights give the

possibility to emphasize the relevance or reliability of cer-
tain measurements over others. In our case, we will assign a
larger weight to the direct (gauge) measurements of the wave,
compared to the indirect indications of a tsunami (namely,
the seismic information and the GPS information).

The mismatch value has several properties, which are im-
portant to note. The mismatch lies in the unit interval. If data
in a specific data type is missing, the corresponding weight
is set to zero. A mismatch valueD = 0 indicates a perfect
match (within the uncertainty range) to given measurements.
In other words, ifD = 0, then the corresponding scenario
lies in the intersection of the combined forecast functionals
as in Sect.3.1. A large mismatch value (i.e. 0.5 and above)
means little resemblance of the scenario to the measured si-
tuation. With increasing availability of data types, the mis-
match value can deteriorate (the absolute value grows). But
this does not necessarily mean a worse correspondence to
the real situation! We will elaborate on this in the following
subsection. Note that the absolute value of the mismatch de-
pends on a number of factors, including the tuned weights,
the (tuned) uncertainty radii, etc. Therefore, it is not worth,
considering the actual value, except for ordering the list of
pre-computed scenarios for their matching quality.

3.5 Evaluating the mismatch value – reliability and skill

In order to gain insight into the behavior of the mismatch
value, the following setting is considered. In a tsunami event,
after a short time seismic information is available. A match-
ing with pre-computed scenarios is performed and yields
zero mismatch value for all those scenarios in the uncertainty
range of the epicenter location and magnitude given. Af-
ter some time, additional wave gauge information becomes
available. Now, the mismatch value increases with a clear
ranking among the scenarios. This can happen, if the earth-
quake source is not among the pre-computed scenarios; in
which case none of the scenarios lies exactly in the intersec-
tion of the two forecast functionals. In spite of the fact that
more information is available, the mismatch deteriorates –
a counterintuitive behavior.

The reason for this behavior is that none of the pre-
computed scenarios matches reality exactly. The best match-
ing scenario might still be in the uncertainty range of the
seismic system and taking those values for matching would
still give a zero mismatch value. However, if only one of
the gauges measures a different signal than present in the
scenario, the mismatch becomes non-zero. So, in order to
obtain a useful quantification of the suitability of a matching
scenario for tsunami hazard forecasting, additional indicators
are needed.

In the example, we have seen that the mismatch can get
worse, even if the information becomes more reliable (due to
an increased number of sensor readings). In order to quan-
tify this reliability, we observe that the corresponding weight
in the mismatch formula (11) is set to zero, if a data type is

www.nat-hazards-earth-syst-sci.net/10/1085/2010/ Nat. Hazards Earth Syst. Sci., 10, 1085–1100, 2010



1092 J. Behrens et al.: Multi-sensor tsunami early warning

not available. At the same time, the weights used in the mis-
match computation, in comparison with all possible values
give an indication on the availability and therefore reliability
of the data.

With this, we formally define thereliability indexby

R =

∑
i∈(available groups)Wi ·

(∑
j∈(available sensors)w

j
i

)
∑

i∈(all groups)Wi ·

(∑
j∈(all sensors)w

j
i

) . (12)

Note that since we normalized our weights, the denomina-
tor is 1, therefore, only the numerator needs to be computed.
Note further that 0≤ R ≤ 1. If R = 0 then no sensors are
available, therefore any matching result would be pure guess-
ing and not reliable at all. If all sensors are available, i.e.
R = 1, then we cannot do better in terms of sensor availabil-
ity, the matching result is reliable. It does not mean that the
mismatch is good, though.

Now, if we had scenarios of different quality, say some
that include a model for the earth crust deformation and oth-
ers that do not. Then the mismatch for those scenarios with
less values to compare could be better than for those includ-
ing the earth crust model (for the same argument as in the
experiment of thought at the beginning of this subsection).
In order to derive a quantitative means to distinguish these
cases, we introduce theskill index, which is defined as the ra-
tio of matched measurements over available measurements.

S =

∑
i∈(used groups)Wi ·

(∑
j∈(used sensors)w

j
i

)
∑

i∈(available groups)Wi ·

(∑
j∈(available sensors)w

j
i

)
=

∑
i∈(used groups)Wi ·

(∑
j∈(used sensors)w

j
i

)
R

. (13)

Note that 0≤ S ≤ 1. If S = 1 all available data could be com-
pared with scenario data, therefore the scenario has a high
skill (usability).

It is important to notice that the reliability indexR is a
quantification of uncertainty related to the available data,
while the skill indexS is related to the matched scenario.

4 Implementation issues

In the previous sections a theoretical motivation and algo-
rithm for the multi-sensor approach to tsunami early warning
has been developed. It is now the aim to describe the imple-
mentation of the system and the related supporting scenario
software.

4.1 The need for an accurate model

From the theory it became clear that the multi-sensor ap-
proach intends to reduce uncertainty in the forecasting pro-
cess. Since this approach is combined with an analog

method, where the forecast relies on pre-computed scenar-
ios, it will only work, if the scenarios are matching real sit-
uations. The scenarios will, for example, contain a systemic
bias, if the wave heights do not fit to the magnitude/location
parameters from the seismic system. This sounds trivial, but
the likelihood for inconsistencies grows with the number of
physical processes/data types represented in the model.

In the GITEWS system, a coupled simulation software
setup is utilized for the scenario generation. It consists of a
source model (RuptGen), which interprets incoming seismic
parameters and calculates initial wave profile as well as co-
seismic 3-D surface dislocations at selected GPS-positions,
and a hydrodynamic wave propagation and inundation model
(TsunAWI). RuptGen has been developed at GFZ German
Research Centre for Geosciences byBabeyko et al.(2010).
It discretizes the 3-D Sunda subduction zone plate interface
into numerous patches and employs Green’s functions tech-
niques and seismic scaling laws to construct a finite-fault
rupture and calculate corresponding co-seismic surface de-
formations.

The operational tsunami wave propagation and inundation
model TsunAWI is based on unstructured finite elements to
allow for local refinement close to the coast and in priority ar-
eas. Additionally, the unstructured triangular grid allows for
locally accurate representation of complex boundaries (Harig
et al., 2008). TsunAWI is fully validated along the line of
Synolakis et al.(2008) for operational tsunami simulation
systems (Androsov et al., 2008).

An inundation result for Padang/West Sumatra including
the unstructured mesh outline, and a wave propagation snap-
shot from TsunAWI are depicted in Fig.4.

4.2 Open system architecture

In order to implement the methodology into a TEWS, and af-
ter having computed a repository of scenarios, the data needs
to be managed in an efficient way. Several important prereq-
uisites need to be fulfilled. Time is an important issue. There-
fore, one design goal is to compute a forecast within less
than 10 s. Furthermore, automatic data management should
be easily achievable. The simulation system (SIM) is part of
a complete system architecture, in which the sensor systems,
the communication infrastructure, the decision support sys-
tem and the dissemination system are key components (see
Fig. 5).

Internally, the SIM is organized in the following functional
units, depicted in Fig.6:

– Web service based interface: using the open GIS con-
sortium (OGC) conforming web processing (WPS) and
web notification services (WNS), the interface to the de-
cision support system (DSS) or the tsunami service bus
– an infrastructure to communicate heterogenous data
in an asynchronous way – is implemented, such that the
SIM can be easily connected to third party visualization
software.
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Fig. 4. Detail of a grid and inundation flow depth in Padang, West
Sumatra, Indonesia, used in the operational tsunami propagation
and inundation model TsunAWI (left), and a typical propagation
example for the Indian Ocean (right).

– Selection module: the selection module implements the
matching logic, described in Sect.3.

– Index database (IDB): in order to achieve performance,
the scenarios are harvested for indexed data, i.e. the rel-
evant data at sensor locations, some meta-data, and an
identifier.

– Index database updater (IDU): the IDU is the harvester,
which automatically retrieves indexed data from the
scenarios.

– Post-processing unit (PPU): this unit consists of plugins
for several pre- or post-processed visualization and data
products. Currently all data output is transferred in SHP
file format.

– Driver level (driver): in order to allow for diverse sce-
nario data formats, a driver level hides the details of
each scenario data format from the SIM internal data
structures.

– Tsunami scenario repository (TSR): a large file system
storing tsunami scenario raw data. It is necessary to
store these, since each new sensor location necessitates
the IDU to harvest all scenarios for the sensor data.

The basic workflow in the system consists of two phases:
the ingestion phase, and the selection phase. In the inges-
tion phase, which is run preferably in idle times (or on a
stand-by non-operational system), new scenarios or sensor
locations are ingested, and data products are computed, upon
request of the DSS. The DSS stores pre-computed maps for
each scenario registered in the IDB for quick access in case
of a tsunami event. In the selection phase, the DSS sends
data messages to the SIM, corresponding to the current state
of the sensor systems. The SIM takes these data messages to
the selection unit and performs a matching, according to the

Fig. 5. Overview of the GITEWS system architecture as seen from
the simulation system (SIM) perspective. Data are gathered by the
sensor systems, passed through a data management unit (tsunami
service bus) and evaluated, merged and visualized by the decision
support system (DSS), before being disseminated.

Fig. 6. System architecture of the simulation system: input and out-
put modules utilize the web processing service (WPS) and web no-
tification service (WNS). The selection unit implements the multi-
sensor selection mechanism, comparing measurements with in-
dexed scenario data in the index data base (IDB), which in turn
is filled by the index data base updater (IDU). IDU and post-
processing unit (PPU) access data in the tsunami scenario repository
(TSR) through a driver.

procedure outlined in Sect.3. It thus returns a list of scenario
identifiers, with corresponding mismatch values, reliability
index and skill indices. The DSS then uses this information
to derive a situation analysis and a corresponding warning
bulletin proposal.

5 Results

In order to validate our approach, we first show a synthetic
benchmark tsunami event, which was used extensively dur-
ing the development phase of the system. Since the sys-
tem is in operational testing since November 2008, one real
life tsunami incident can be used for further evaluation, the
30 September 2009Mw=7.7 earthquake and minor tsunami
close to Padang.
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Fig. 7. Bechmark slip distribution (left) and sensor network (right). The two benchmark gauge locations are marked by a red pentagon, and
the epicenter location by a red star. Orange triangles indicate GPS stations and blue circles represent the buoy locations.

5.1 An artificial benchmark experiment

The synthetic benchmark experiment has been derived in the
following way: An independent group within the GITEWS
consortium, computed a tsunami event for the area of
Padang, taking a complex rupture (slip distribution is shown
in Fig. 7, and follows that of the Bengkulu 12 Septem-
ber 2007 event shifted closer to Padang). Correspond-
ing GPS dislocation vectors (at the positions of the Suma-
tran cGPS Array SuGAr network1), seismic parameters, and
wave height values at two GITEWS buoy locations as well as
at benchmark gauge locations in Padang and Bengkulu were
given. Computations for these values were made by RuptGen
for the GPS vectors and by an independent finite difference
tsunami wave propagation model for the gauge values. The
assumed sensor network is depicted in Fig.7. The assumed
earthquake has a moment magnitude of 8.0 (MW) and its epi-
center is located at (99.93◦ E, 1.96◦ S).

We perform several experiments. First, we show the re-
sult of a matching with only the seismic parameters (epicen-
ter location and magnitude) given. Since sensitivity of this
forecast functional (see Sect.2) is high, large uncertainty is
present in this forecast. The list of possibly matching scenar-
ios is derived by looking at the mismatch values. All scenar-
ios are sorted with increasing mismatch value. It turns out
that some of the scenarios get similar mismatch values and
that certain plateaus are visible in the mismatch histogram
(see Fig.8). The list of scenarios is cut off, after the second
such plateau, where the detection is based on evaluating the
difference histogram.

1http://www.tectonics.caltech.edu/sumatra/sugar.html,
last access: 26 May 2010

Figure 9 shows the locations of all those scenarios with
epicenters in the uncertainty range of the seismic forecast
functional (and the few more, which are in the mismatch list).
This results in largely uncertain results for the forecasts in
both benchmark regions. A decision maker in the warning
center would still do a reasonable job for Padang, when tak-
ing the worst case to forecast arrival time and wave height.
However, in Bengkulu, the worst case forecast would largely
overestimate the true effect of the tsunami. Note that out of
the selected 32 possible scenarios, 22 have a mismatch value
of zero. The remaining 10 have mismatch values between
0.0003 and 0.008. Reliability index is 0.22, and the skill is
1.0, since all scenarios can match all given data. In fact, since
we can always match all measurements, all scenarios and ex-
periments in this section have a skill 1.0.

As soon as additional information is available, the number
of possible scenarios drops. Let us assume that anomalies
are easily detected at buoy locations. At least the arrival time
could be a robust signal, which gives further information
about the possible rupture extent. The result is depicted in
Fig. 10. The area of possible epicenter locations has largely
reduced. There are still several possible scenarios, but they
are quite similar in their behavior now, as can be seen from
the mareogram panels in Fig.10. Now, taking the worst case
as a forecast, yields accurate warning bulletins in both bench-
mark locations. Additionally, especially for Bengkulu, all the
different scenarios expose a similar character, which gives a
lot of confidence in this forecast. The reliability index is now
0.44. None of the selected scenarios has a mismatch of 0.0,
since none of the scenarios can exactly represent the behav-
ior of the complex rupture area. In fact, the best matching
scenario has a mismatch value of 0.011, showing that the ab-
solute value of mismatch does not give relevant information.
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Fig. 8. Mismatch histogram for the synthetic test case with approximately 220 pre-computed scenarios (left). The difference plot (right)
shows the difference of mismatch values of predecessor scenario to following scenario. Peaks show the location, where a next “plateau level”
in the mismatch list is reached. The list is cut off after the second significant peak, where the horizontal line indicates the threshold value for
significant.

Fig. 9. Benchmark experiment with given seismic parameters. The locations of matching scenarios (left) and the corresponding mareograms
in comparison with the benchmark gauge time series for Padang (center) and Bengkulu (right) are shown. Dark color indicates small
mismatch, light color larger mismatch.

Fig. 10. Benchmark experiment with given seismic parameters and arrival times (see Fig.9 for description of the three panels).
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Fig. 11. Benchmark experiment with given seismic parameters, arrival times and wave height time series at buoy locations (see Fig.9 for
description of the three panels).

Fig. 12. Benchmark experiment with given seismic parameters and GPS dislocation vectors (see Fig.9 for description of the three panels).

Adding a time series comparison at the buoy locations (and
here, we compare only those few measurements, which are
available up to 5 min after the rupture, and we use a sam-
pling rate of only 1 min), we can further reduce the uncer-
tainty. Only three scenarios are left in the uncertainty range
(see Fig.11). Two of them (in dark blue) represent the best
matching scenarios in the repository to the “true” event. A
decision maker can now give a precise warning with great
confidence. The reliability in this case is 0.66. From the
three examples shown so far, we see that the reliability in-
creases with the number of sensor readings available for the
matching. Consequently, the uncertainty decreases, and the
forecast becomes more accurate.

Note that none of the scenarios has zero mismatch value
any longer. This is due to the fact that the complex rupture
cannot be reproduced exactly by any scenario in the repos-
itory. However, the best matches still give a very accurate
resemblance with the “true” event. It should further be noted
that this data coverage is a little unfair. In real life, the wave
height time series at the buoys may not be so well behaved.
In particular, since the buoys are located close to the sources,
a superposition of seismic signals with water waves can oc-
cur, which will possibly render the time series information
uncertain.

So, let us try to use the GPS signal instead. Starting from
the seismic data set (epicenter location and magnitude), we
add the GPS signals. In fact, only significant signals add any
information, since the uncertainty here is in the range of 5 cm
(every dislocation below that threshold is taken to be zero).
This information reduces the uncertainty greatly, so that only
three scenarios remain in the set of possibilities (Fig.12).
However, at least one unrealistic scenario cannot be ruled
out just by adding GPS information. In spite of this, a deci-
sion maker would give a much better warning with than with-
out the additional GPS information: from maximum wave
heights, rather correct warning levels would be derived. Only
the arrival time for Bengkulu would be too conservative. The
reliability for this case is 0.44. Data from real-time GPS-
arrays are available in just a few minutes after the earthquake
event, which makes this type of data very valuable for the
near-field early warning (Sobolev et al., 2007).

Finally, if we added wave arrival times at the buoy posi-
tions to the seismic and GPS information, only two possible
scenarios remain (Fig.13). In Bengkulu the two behave sim-
ilar and their results are both worth to be taken as a forecast
given the overall uncertainty. In Padang it is noteworthy, that
the less well matching scenario is in fact quite wrong. How-
ever, the distance (in terms of mismatch value) to the best
matching and accurate result is large. Reliability in this case
is again 0.66.
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Fig. 13.Benchmark experiment with given seismic parameters, wave arrival at buoys, and GPS dislocation vectors (see Fig.9 for description
of the three panels).

Table 3. Stages in the evaluation of the Padang earthquake.

Data set Timestamp Time after rupture Location Magnitude GPS used

1 10:18:11 UTC 2:05 min (0.944◦ S, 99.511◦ E) 7.5 no
2 10:19:48 UTC 3:39 min (0.905◦ S, 99.629◦ E) 8.3 no
3 10:21:10 UTC 5:02 min (0.958◦ S, 99.563◦ E) 8.3 yes
4 10:25:20 UTC 9:12 min (0.958◦ S, 99.563◦ E) 8.2 yes

5.2 Hindcasting the Padang earthquake and tsunami
from 30 September 2009

On 30 September 2009, 10:16 UTC, a strong earthquake
occurred with an epicenter location at (0.78◦ S, 99.87◦ E)
and a moment magnitudeMw=7.7 (GFZ Potsdam, 2009).
The earthquake caused an official number of 1115 casualties
in Padang and nearby communities (Antara News, 2009).
Additionally, it triggered a minor tsunami. In contrast to
JMA and PTWC, which act as interim regional tsunami
watch providers in the Indian Ocean region, the Indonesian
Tsunami Warning Center at BMKG issued no tsunami warn-
ing. This was a correct assessment of the situation.

The multi-sensor selection simulation component of the
InaTEWS/GITEWS system was not used for this assessment,
since many of the non-seismic sensors were not yet avail-
able, or did not deliver online sensor readings. In order to
reconstruct and hindcast the event with the future capacity
of the multi-sensor selection based simulation system, we
look at the stages of the sensor system, listed in Table3.
GPS data were available from two sensor locations, in Se-
blat (3.2◦ S, 101.5995◦ E) and Nias (1.3◦ N, 97.57◦ E). Both
readings were insignificant, supporting the assumption of an
earthquake with minor uplift and thus minor tsunami gener-
ation. In addition, both stations are probably too far from the
rupture area in this case.

Analysis of the seismic data suggests that this was not a
typical mega-thrust type earthquake but was an intra-plate
earthquake (Lange et al., 2009; Grijalva et al., 2009). Thus,
the pre-computed scenarios do not have the chance to resem-
ble the true situation exactly. However, it is the goal of this
section to asses the suitability of the forecasts, in such a real-
life situation.

The first seismic estimate of the situation was available af-
ter approximately 2 min, and gave a reasonable (compared to
the final seismic parameters) estimation of the basic seismic
situation. The closest pre-computed scenario is depicted in
Fig. 14. Its epicenter location (0.91◦ S, 99.62◦ E) is further
to the West. In fact, one of the results of this event was the
decision to extend the area of pre-computed scenarios further
to the East. However, the warning levels, derived from this
scenario would suggest no warning since the maximum wave
heights along the coast close to Padang is everywhere below
0.5 m.

After approximately three and a half minutes (data set 2 in
Table3), still only seismic parameters are available. Now, the
magnitude is over-estimated. Correspondingly, the warning
level is adjusted to an (unrealistic) “tsunami warning”, and
even “major tsunami warning” around Padang (Fig.15). This
means, maximum wave heights of 0.5 m to 3.0 m (tsunami
warning) and over 3.0 m (major tsunami warning) can be ex-
pected and local or even widespread devastating inundation
cannot be excluded. For both data sets, the reliability is 0.25.
This low value reflects the fact that only primary seismic in-
formation (magnitude and epicenter) is available.
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Fig. 14. Result of the selection after 2 min (data set 1). The red and
blue line indicate the outline of the vertical sea bottom displacement
(red – positive, blue – negative). The different measured epicen-
ter locations with circle size indicating the magnitude are shown.
Green points at the coast indicate no warning level (green – no
warning, orange – tsunami warning, red – major tsunami warning),
or maximum wave height lower than 0.5 m.

Fig. 15. Result of the selection after 3.6 min (data set 2), analogous
to Fig. 14. The selected scenario corresponds to a magnitude 8.5
(Mw) earthquake, largely over-estimating the true event.

The GPS data in the third data set, do not really help to
improve the situation. Since only two GPS stations deliver
data, the reliability increases to a still very low value of 0.28.
In this case, one of the stations delivers data below the rele-
vance threshold. One station’s data just slightly exceeds the
confidence interval of the GPS system, which at the time of
the experiment was computed to be approximately 1.5 cm.
However, it turns out in data set 4 that this value is caused by
a temporary displacement or by atmospheric disturbances.

Fig. 16. Result of the selection after 5 min (data set 3), analogous
to Fig.14. An insignificant GPS signal spoils the selection solution,
since now a scenario with a dislocated uplift area is selected. Its
Mw=8.2.

This faulty signal causes the selection system to suggest a
scenario, for which the uplift area is far from the seismic
system’s epicenter location. The forecast, however wrong,
would suggest no tsunami warning (see Fig.16). Since the
seismic parameters do not indicate major dislocations at the
GPS stations in the scenarios, a non-zero mismatch value of
0.0016 is now computed.

Finally, after approximately 9 min (data set 4) none of the
two GPS stations report a significant signal. In other words,
both station’s values do not exceed the confidence intervals
and are therefore taken to be zero. In spite of the fact that
these signals are of minor relevance, they are taken into ac-
count in the matching process. Therefore, reliability is 0.28,
as with data set 3. However, the matching is now again con-
sistent with a mismatch value of 0.0. Since the seismic pa-
rameters are still over-estimated, a scenario withMw 8.0 is
selected, yielding a warning level corresponding to “tsunami
warning” (Fig.17).

It turns out that for events with a magnitude of 7.5 and
lower, it is paramount to do a proper seismic parameter esti-
mation. GPS signals may be useful, if a dense enough GPS
network is available. In the case of the Padang earthquake,
the stations were too far from the rupture area to yield rele-
vant information. In fact, it might be useful to filter tempo-
rary dislocations, if unreasonable. The first data set, with its
correct assessment of the seismic parameters, yields a realis-
tic and accurate tsunami situation assessment. The selection
depends sensitively on correct sensor readings.

It should be noted that the four data sets are a small selec-
tion of all the data sets used during the event. The decision
not to issue a warning was taken on basis of correct seismic
assessments.
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Fig. 17.Result of the selection after 9 min (data set 4), analogous to
Fig. 14. Due to the over-estimated seismic magnitude, the warning
level derived from the matched scenario over-estimates the potential
hazard.

6 Conclusions

A new near-field selection procedure for inverting the
tsunami hazard situation from given online sensor measure-
ments has been developed. The method is based on a rigor-
ous uncertainty propagation and quantification model. The
model not only motivates a multiple sensor evaluation proce-
dure for uncertainty reduction, used for the operational sys-
tem, but it also explains the large number of false positive
warnings, generated by traditional systems in the near-field
warning process.

The model is demonstrated with three independent sensor
systems in place: the seismic system, a real-time continu-
ous GPS system, and an online deep ocean and coastal wave
gauge system. The model can be easily extended by other
independent sensor systems, coming up in the future, e.g.
radar based wave warning systems, or altimetry-based sys-
tems. The basic principle is to reduce the number of possible
representers (tsunami scenarios) by using independent mea-
surements of the same event. Only a small number of scenar-
ios can match the independent measurements, even with high
uncertainty in each individual set of measurements, since the
combination needs to fit.

Two examples demonstrate the ability to forecast tsunami
events in case of uncertain data. In an artificial test case, the
method proves its robust ability to reduce uncertainty. For
the real (untypical) earthquake near Padang, the results are
not yet completely satisfying. The reason for this, however,
is a still not complete network of sensors, which does not
yield enough independent and significant signals for reduc-
ing the uncertainty. The remaining project time will be used
to extend the sensor network, to tune the thresholds and pa-

rameters in the selection procedure, to further populate the
set of pre-computed scenarios, and to gain experience with
the system. The important goal of gaining time for disaster
reaction by reducing warning time, without sacrificing accu-
racy, could be achieved.
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