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Abstract. The nonlinear mechanism of long gravitational
surface water wave generation by high-frequency bottom os-
cillations in a water layer of constant depth is investigated
analytically. The connection between the surface wave am-
plitude and the parameters of bottom oscillations and source
length is investigated.

1 Introduction

If during an underwater earthquake the frequency of verti-
cal bottom oscillations is greater than

√
g/H and the oscil-

lations are not accompanied by residual displacement, then
an effective excitement of surface gravity waves (tsunami) is
impossible (Nosov, 1999). This effect is a result of linear the-
ory. However, strong underwater earthquakes are certainly
accompanied by bottom oscillations of significant velocity
magnitude; thus linear theory becomes inapplicable and non-
linear phenomena cannot be neglected. Here, we consider
long gravitational wave generation as a result of nonlinear
water layer fast oscillations “rectification”. Our goal is to
study the relationship between the long gravitational wave
amplitude and bottom oscillations parameters.

2 Basic mathematical model

Let us consider an ideal incompressible homogeneous fluid
layer of constant depthH in the gravity field. The Cartesian
coordinate systemOXZ origin finds itself at the unperturbed
free surface andOZ-axis is oriented vertically upward. It is
assumed that fluid velocity consists of oscillating (fast) and
time averaged (slow) terms:

u
∑

(x, z, t) = u(x, z) cos(ωt) + U(x, z, t), (1)

w
∑

(x, z, t) = w(x, z) cos(ωt) + W(x, z, t), (2)

whereu andw are horizontal and vertical fluid velocity com-
ponents.
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Substituting expressions (1) and (2) into the left part of
the Euler equations and averaging these equations in time we
obtained:
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where

fx(x, z) = −
1

2

[
u(x, z)

∂u(x, z)

∂x
+ w(x, z)

∂u(x, z)

∂z

]
, (3)

fz(x, z) = −
1

2

[
u(x, z)

∂w(x, z)

∂x
+ w(x, z)

∂w(x, z)

∂z

]
. (4)

Euler equations’ non-linearity produced additional terms in
the governing equations for the time averaged flow. These
terms (3, 4) can be considered asx andz external mass force
components.

3 Auxiliary linear problem

In order to calculate the external mass force it is necessary to
define the velocity field in the fluid layer. Let us define this
field as a linear response of an ideal fluid to bottom oscilla-
tionsη(x, t). We can consider an auxiliary linear problem in
terms of the fluid velocity potentialF(x, z, t):

Fxx + Fzz = 0 (5)

Ft t = −gFz, z = 0, (6)

Fz = ηt , z = −H, (7)



252 M. A. Nosov and S. N. Skachko: Nonlinear tsunami generation mechanism

Fig. 1. Examples of spatial distribution of the mass forceη1(x) (from formula (9),a = 1, 3 and 5).

The potential Eq. (5) with boundary conditions on surface
(6) and bottom (7) was solved using the standard method of
separation of variables. A general solution of this problem in
terms of Laplas and Fourier expansions is:

F(x, z, t) = −
1

4π2i

∫ s+i∞

s−i∞

dp

∫
∞

−∞

dk, (8)

p exp(pt − ikx)ch(kz)
[
gk − p2th(kz)

]
k ch(kH)

[
gk th(kH) + p2

] G(p, k),

where

G(p, k) =

∫
∞

0
dt

∫
∞

−∞

dx exp(−pt + ikx) η(x, t)

The velocity components can be expressed in terms of po-
tential:

u(x, z, t) =
∂F

∂x
, w(x, z, t) =

∂F

∂z
.

We assume the following function for bottom oscillations:

η(x, t) = ηi(x) θ(t) sin(wt), i = 1, 2 (9)

η1(x) = η0 exp(−x2 a−2)

η2(x) =

{
η0, |x| ≤ b,

η0c
−1(b − |x|) + 1, b < |x| ≤ b + c,

0, |x| > b + c,

whereη0 andω are the amplitude and the frequency of bot-
tom oscillations, respectively,θ is the Heaviside step func-
tion.

We introduce nondimension variables (the superscript “*”
will be omitted hereafter)

k∗
= Hk, t∗ = t (g/H)1/2, ω∗

= ω(H / g)1/2,

{x∗, z∗, a∗, b∗, c∗
} = H−1

{x, z, a, b, c, }, (10)

{u∗, w∗
} = {u, w} / (η0ω).

The final formulae for the fluid velocity components are as
follows:

u(x, z, t) =
1

π

∫
∞

0
dk

sin(kx) ch(kz) Xi(k)

ch(k)(p2
0 − ω2)
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[
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]
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[
k + p2
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(11)

w(x, z, t) = −
1

π

∫
∞

0
dk

cos(kx) ch(kz) Xi(k)

ch(k)(p2
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×
{
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[
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[
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(12)

where

p2
0 = k th(k),

Xi(k) =

∫
+∞

−∞

dx exp(ikx) ηi(x).

Numerical analysis of expressions (11), (12) gives us the
basis to state that in the frequency rangeω > 2π

√
g / H

each point of fluid oscillates harmonically in accordance with
expressions (1), (2). Now, since we have explicit expressions
for the functionsu(x, z) andw(x, z), it is easy to calculate
the force componentsfx andfz using formulae (3) and (4).

The force spatial distribution examples are shown in
Fig. 1. They were calculated for the bottom oscillation am-
plitude distributionη1(x) for different source lengths. It is
evident from the figure that such force distribution can lead to
the generation of long gravitational wave (tsunami). As the
source length increases the vertical component of the force
becomes negligible in comparison with the horizontal one.
The horizontal size of the tsunami source usually exceeds the
ocean depth significantly; so the linear shallow water theory
can be applied in order to estimate gravitational waves ex-
cited by the mass force.

4 Long wave generation

The linear shallow water theory equations, taking into ac-
count effect of the horizontal forcef (x, t)

∂U

∂t
= −g

∂ξ

∂x
+ f (x, t),
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Fig. 2. The maximum amplitude of the long wave as a function
of bottom oscillation duration. Curves 1, 2, 3 correspond toη1(x)

from formula (9),a = 5, 10 and 20; curves 4 and 5 correspond to
η2(x): b = 2, c = 3 (4), andb = 1, c = 9 (5).

∂ξ

∂t
+ H

∂U

∂x
= 0

are reduced by a traditional approach to a nonhomogeneous
wave equation; the equation is written in dimensionless form:

∂2ξ

∂x2
−

∂2ξ

∂t2
=

H

g

∂f

∂x
, (13)

whereξ is a free surface displacement from the equilibrium
andξ andf in Eq. (13) are dimensional quantities. The ana-
lytical solution of this equation is well-known:

ξ(x, t) =
H

2g

∫ t

0
dσ

∫ x+(t−σ)

x−(t−σ)

∂f

∂ς
dς. (14)

Let us consider bottom oscillations of constant amplitude
and frequency. Duration of the oscillations isτ . The function
f (x, t) can be written in the following form:

f (x, t) = f (x)[θ(t) − θ(t − τ)]. (15)

Substituting (15) in (14) and integrating overdξ we ob-
tained

ξ(x, t) = −
H

2g

∫ t

0

[
θ(σ ) − θ(σ − τ)

]
[
f

(
x + (t − σ)

)
− f

(
x − (t − σ)

)]
dσ. (16)

We can define functionf (x) using formula (3) as follows
f (x) = fx(x, −0.5).

5 Discussion of results

Using Eq. (16) we obtained free surface displacements gen-
erated by a nonlinear mechanism. Figure 2 shows the max-

imum displacement amplitudeξmax plotted as a function of
the oscillations durationτ . The maximum amplitude rises
monotonically until value 0.25 as the duration goes up. Nei-
ther source horizontal size nor the spatial distributionηi(x)

alter this dependence by much. In all cases the maximum
amplitude reaches the same value 0.25 at largeτ .

This nonlinear effect can be interpreted in the following
way. The amplitude of fluid particle oscillations at a given
point decreases as the point moves away from the source.
This is why fluid particles after the oscillation period did not
return exactly to the previous position. Thus fluid is “ex-
truded” from the more intensive oscillations areas. This is a
cause of the long gravity wave formation. The amplitude of
such wave depends on the spatial distribution of bottom os-
cillations, on the oscillating velocity amplitudeη0ω, and on
the durationτ .

The data shown in Fig. 2 allows one to estimate a contri-
bution of the nonlinear mechanism in the tsunami amplitude.
For the source parametersH =1 km,a =10 km (spatial dis-
tribution η1) bottom oscillations with velocity amplitude of
10 m/s generate a wave of 0.8 m height during 60 s.

It should be noted that the compressible fluid theory has to
be employed in case of high frequency bottom oscillations. It
imposes certain restrictions on the application of the results
received above. Novikova and Ostrovsky (1982) also studied
the nonlinear tsunami generation mechanism; they took into
account water compressibility. However, in order to define
tsunami parameters, a hypothetical acoustic field was used;
thus a connection between bottom motions and the gravita-
tional long wave was not established. In contrast to the paper
by Novikova and Ostrovsky, (1982), in our study the maxi-
mum tsunami amplitude was calculated as a bottom oscilla-
tion parameters function.

In the future, we certainly plan to take into account wa-
ter compressibility. The necessary linear models have been
developed by us earlier (Nosov and Sammer, 1998; Nosov,
1999, 2000).
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