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Abstract. The problem of tsunami wave generation by vari-
able meteo-conditions is discussed. The simplified linear and
nonlinear shallow water models are derived, and their ana-
lytical solutions for a basin of constant depth are discussed.
The shallow-water model describes well the properties of the
generated tsunami waves for all regimes, except the reso-
nance case. The nonlinear-dispersive model based on the
forced Korteweg-de Vries equation is developed to describe
the resonant mechanism of the tsunami wave generation by
the atmospheric disturbances moving with near-critical speed
(long wave speed). Some analytical solutions of the nonlin-
ear dispersive model are obtained. They illustrate the dif-
ferent regimes of soliton generation and the focusing of fre-
quency modulated wave packets.

1 Introduction

Tsunami waves may be generated by underwater earth-
quakes, submarine landslides, rockslides, volcano explosions
and rapid anomalous changes in the atmospheric pressure
over the sea (Murty, 1977; Pelinovsky, 1996). For a tsunami
to arise, it is necessary that the water surface deviate from
its equilibrium on a sufficiently large area. In these cases the
shallow water theory or long wave theory is the good theo-
retical and numerical model to describe the properties of the
tsunami waves. In many cases, the tsunami source moves
with variable speed and direction. Such a situation is typical
for meteorological tsunamis and this mechanism is investi-
gated by Efimov et al. (1985) and Rabinovich (1993). Mete-
orological tsunamis have occurred in the Mediterranean Sea
and in the Okhotsk Sea (Rabinovich and Monserrat, 1998).
In particular, near the Balearic Islands, the estimated atmo-
spheric wave speed of 29 m/s is very close to the phase speed
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of long waves of 31 m/s (Rabinovich and Monserrat, 1998),
so the resonance effects should be very important.

The given paper analyzes the resonance effects of tsunami
generation by moving atmospheric disturbances which lead
to the appearance of anomalous large waves. The paper is
organized as following. The nonlinear and corresponding
linear shallow-water theory of tsunami generation by the at-
mospheric disturbances is briefly discussed in Sect. 2. The
resonance character of tsunami generation is investigated in
Sect. 3. Detailed calculations are given for 1D case, where all
analytical expressions can be obtained in the explicit form.
The similarity of the considered problem to the problem of
tsunami generation by moving landslides is mentioned here
(Pelinovsky, 1996; Pelinovsky and Poplavsky, 1996; Tinti
and Bortolucci, 2000a, b; Tinti et al., 2001). A nonlinear-
dispersive model of the resonant generated tsunami waves is
briefly reproduced in Sect. 4. This model is based on the
famous forced Korteweg-de Vries equation derived first by
Akylas (1984). The solitary wave generation and interaction
with moving forcing is studied in Sect. 5 based on the re-
sults by Grimshaw et al. (1994). There is a lot of various
scenaria of wave dynamics depending on the speed and sign
of the atmospheric disturbance. It is shown that the maxi-
mal variation of wave amplitude in the process of interaction
can reach two to three times. The effect of wave focusing
of nonlinear dispersive wave packets is analyzed in Sect. 6.
Such an effect is well-known for wind-generated waves and
leads to the generation of freak or rogue waves (Osborne et
al., 2000; Kharif et al., 2001). The same process of wave
focusing with formation of the large-amplitude waves is pos-
sible for tsunami waves. Obtained results are summarized in
the conclusion. The main goal of this paper is to demonstrate
the use of possible analytical tests that characterize the role
of nonlinearity, dispersion and forcing in the processes of the
tsunami generation by atmospheric disturbances; such solu-
tions are important for interpretation of field data and results
of the numerical simulations.
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Fig. 1. Problem geometry.

2 Shallow water model of the tsunami generation by at-
mospheric disturbances

The basic hydrodynamic model of tsunami generation by the
atmospheric disturbances is based on the well-known Euler
equations for ideal fluid on the non-rotated Earth

∂u

∂t
+ (u∇)u + w

∂u

∂z
+

1

ρ
∇p = 0, (1)

∂w

∂t
+ (u∇)w + w

∂w

∂z
+

1

ρ

∂p

∂z
= −g, (2)

∇u +
∂w

∂z
= 0 (3)

with corresponding boundary conditions at the bottom and
ocean surface (geometry of the problem is shown in Fig. 1).
At the solid bottom

(
z = −h(x, y)

)
,

w − (u∇)h = 0. (4)

At the free surface
(
z = η(x, y, t)

)
, the kinematic condition

is

w =
dη

dt
=

∂η

∂t
+ (u∇)η, (5)

and the dynamic condition,

p = patm(x, y, t). (6)

Here η(x, y, t) is the elevation of water surface,u and w

are horizontal
(
u = (u, v)

)
and vertical components of

the velocity field,x andy are coordinates in the horizontal
plane;z-axis is directed upwards vertically,ρ is water den-
sity, p is pressure andpatm is the variable atmospheric pres-
sure,g is gravity acceleration,h(x, y) is the variable ocean
depth. Differential operator,∇ acts in the horizontal plane(
∇ = {∂/∂x, ∂/∂y}

)
.

Usually tsunami waves are long (as compared with the
ocean depth). Therefore, it is natural first to consider the
long-wave (or shallow-water) approximation of the model
of tsunami generation, and then to estimate conditions of
its applicability. The theory of long waves is based on the
main assumption that the vertical velocity and acceleration
are low as compared to the horizontal ones and can be calcu-
lated from the initial system using the asymptotic procedure.
As a small parameter it uses the ratio of the vertical velocity
to the horizontal one or the ocean depth to the characteristic

wavelength. Here a simpler algorithm is used, which consists
of neglecting vertical acceleration,dw/dt in Eq. (2). In this
case Eq. (2) is integrated and, with the dynamic boundary
condition (Eq. 6) taken into account, determines the hydro-
static pressure

p = patm + ρg(η − z). (7)

Substituting Eq. (7) into Eq. (1) and neglecting the vertical
velocity once again, we obtain the first equation of the long-
wave theory

∂η

∂t
+ (u∇)u + g∇η = −

∇patm

ρ
. (8)

The second equation is yielded by integration of Eq. (3)
over the depth from the bottom

(
z = h(x, y)

)
to the surface(

z = η(x, y, t)
)
, taking into account boundary conditions

(Eq. 4 and 5), as well as the fact that horizontal velocity does
not depend on vertical coordinate,z

∂η

∂t
+ ∇

[
(h + η)u

]
= 0. (9)

Equations (8 and 9) are closed as related to functionsη

andu. They arenonlinear(the so-called nonlinear shallow-
water theory),inhomogeneous(the right-hand part is non-
zero), and with variable coefficients due toh(x, y).

The linear version of the shallow-water theory is most gen-
erally used within the tsunami problem. In this case varia-
tions of water depth are assumed weak, as well as the velocity
of the fluid. As a result, we obtain a linear set of equations

∂u

∂t
+ g∇η = −

∇patm

ρ
, (10)

∂η

∂t
+ ∇[hu] = 0. (11)

It is convenient to excludeu and pass over to the wave equa-
tion for the surface elevation

∂2η

∂t2
− ∇

(
c2

∇η
)

= ∇

(
h

ρ
∇patm

)
, (12)

where

c(x, y) =
√

gh(x, y) (13)

is the speed of long wave propagation. Equation (12) is the
basic one within the linear theory of tsunami generation and
must be supplemented by the initial conditions. It is natural
to believe that at the initial moment the ocean is quiet, i.e.

η = 0, u = 0, v = 0, or ∂η/∂t = 0, (14)

although due to linearity of Eq. (12), a more general case can
also be considered. From the point of view of mathematical
physics, the wave (Eq. 12) is too well studied to discuss the
details of its solution here. The governing and long-wave
systems presented here are the basic hydrodynamic models
of tsunami generation by the atmospheric disturbances.
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3 Long wave generation on a sea of constant depth

The simplest model here uses the linear wave Eq. (12) with
constant depth. In this case Eq. (12) reduces to the classical
wave equation

∂2η

∂t2
− c2

∇
2η =

h

ρ
∇

2patm, (15)

with constant long-wave speed,c and zeroth initial condi-
tions. Having replaced variable

ζa =
hpatm

ρc2
, η = ζ − ζa, (16)

Eq. (15) reduces to

∂2ζ

∂t2
− c2

∇
2ζ =

∂2ζa

∂t2
. (17)

In these variables the problem of tsunami wave generation by
atmospheric perturbations is fully reduced to the analogous
problem in the case of tsunami excitation by bottom displace-
ments. Therefore, all the results of the linear shallow-water
theory for “earthquake” tsunamis remain valid in this prob-
lem too. Note some differences, though. First, in the case
of a static atmospheric perturbation, the solution of Eq. (17)
becomes trivial, and the water level is equal to

η = −ζa = −
hpatm

ρc2
. (18)

This relation is called “the law of the inverse barometer”.
Certainly, Eq. (18) can be supplemented with the constant
which characterizes the average sea level under the average
atmospheric pressure. Static “tracing” of atmospheric per-
turbations is typical for “atmospheric” problems and permits
one to judge the values of atmospheric perturbations based
on the data about changes in the sea level obtained, for ex-
ample, from space.

Second, the piston model that is most characteristic for
tsunami waves of seismic origin is not the main one here; it
corresponds to the edge of the atmospheric disturbance, for
example, to the difference in pressures on one side of the ty-
phoon. And if we consider the atmospheric perturbation to
be time-localized, then it corresponds to the bottom displace-
ment that comes back to the initial state; by this, naturally, the
amplitude of the excited waves will be smaller than that at the
piston displacement. Thus, keeping other conditions equal,
the meteorological tsunami is the strongest when a region
of lower (higher) pressure (cyclone or anticyclone region) is
formed quickly. If this region is stationary, or moving slowly,
we have the complete analogy with the corresponding results
for the piston model and there is no possibility to consider
separately the generalization of the linear long-wave model.
The Green function for waves generated by the atmospheric
disturbances in the framework of linear potential theory is
given by Kajiura (1963). However, if a cyclone is moving,
a resonance between the cyclone velocity and the speed of
tsunami waves is possible.

Let us consider the simplest one-dimensional model of cy-
clone when the atmospheric pressure is varied along the axis
x only, and a cyclone moves with constant speedV . The so-
lution of Eq. (15), which satisfies the zeroth initial condition,
is easily found explicitly (see for comparison, Pelinovsky,
1996; Tinti et al., 2001)

η(x, t) =
c2

V 2 − c2
ζa(x − V t) −

c

2(V + c)
ζa(x − ct)

+
c

2(V + c)
ζa(x + ct). (19)

This solution is a superposition of three waves: one of
them is bounded, and the two others are free. After some
time they become separated in space: the first wave propa-
gates together with the cyclone, and the other two leave it.
Let us discuss first the field in the source for sufficiently
long times, when the waves become separated in space; it
is described by the first term in Eq. (19). We see that in the
case of large speed (V → ∞) the surface elevation is very
weak (η ≈ c2ζa/V 2), and when the cyclone motion is slow
(V → 0) the surface level is the almost static disturbance
Eq. (18). Of special interest is the case of synchronism be-
tween the cyclone motion and the excited wave, when even a
small atmospheric disturbance causes strong water elevation
(formally, infinite within this model). The free wave moving
in the same direction with the cyclone is similarly amplified
(but it is a trough, not a crest). The wave propagated in the
opposite direction from the cyclone is limited with respect to
the amplitude at any speed (that is caused by a great differ-
ence in velocities) and this wave is not resonant.

Similar calculations can also be made for the two-
dimensional atmospheric disturbances. Detailed calculations
in the framework of Eq. (17) (formally, they were done for
moving bottom displacements) were performed by Novikova
and Ostrovsky (1978), and later confirmed within numerical
modelling (Marchuk et al., 1983; Nosov and Shelkovnikov,
1995). It should be emphasized that the resonance is retained
in the plane problems, wherein all the disturbances with ve-
locities higher thanc are of a resonance character, and max-
imum radiation occurs along directionsθ = arccos (c/V ),
determined through the so-called Mach (Cherenkov) angle.
Such relations are well-known in the theory of wave radia-
tion. Wave amplitude stays finite atc 6= V , and it is propor-
tional to the factor(1 − c2/V 2)−1/2 for the Mach direction.

To estimate the accuracy of the linear model, let us con-
sider the problem of tsunami generation by a moving cyclone
within the nonlinear formulation. We will limit ourselves
to the unidimensional variant of the nonlinear shallow-water
theory (Eq. 8 and 9),

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= −

1

ρ

∂patm

∂x
, (20)

∂η

∂t
+

∂

∂x

[
(h + η)u

]
= 0. (21)

Assuming that the elevation is only a function of the run-
ning coordinateζ = x − V t , we will try to find solutions for
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Fig. 2. Resonance curve for nonlinear generation of tsunami waves
by atmospheric disturbance.

this system in the same form, i.e. depending on the same co-
ordinateζ . Then the system (Eq. 20 and 21) yields nonlinear
algebraic equations,

(h + η)u = V η, gη = V u −
u2

2
−

patm

ρ
, (22)

where it is assumed that there are no perturbations of the sea
level and velocity outside the cyclone region. If bottom dis-
placement is small andV 6= c, this algebraic system yields a
linear relation (the same as the first term in Eq. 19). How-
ever, there is no unlimited growth of the amplitude under
resonanceV = c, and the corresponding resonance curve,
“water elevation – Froude number”, can be obtained from
Eq. (22)

p =
2(F r − 1)ζ + (F r − 4)ζ 2

− 2ζ 3

2(1 + ζ )2
, (23)

where the Froude numberFr = V 2/gh, and the water el-
evation is normalized on the basin depth,ζ = η/h, and
P = patm/ρc2. This solution for different values of the at-
mospheric pressureP , is presented in Fig. 2. The curves are
non-symmetric about the valueFr = 1, which is normal for
nonlinear problems.

4 Nonlinear dispersion model of resonant generated
waves

The formulae presented above yield out of the resonance
V = c that the wave field is well described within the lin-

ear shallow-water theory. In the case of the resonance the
effects of nonlinearity and dispersion are very important. Let
us consider here a simplified model for resonance nonlin-
ear generation of tsunami waves by the atmospheric distur-
bances including dispersion (Akylas, 1984; Pelinovsky and
Choi, 1993). The equations of the nonlinear theory of long
waves have been derived in Sect. 2. The dispersion effects are
characterized by the vertical acceleration,dw/dt in Eq. (2)
which is ignored usually in long-wave theories. In the case of
weak nonlinearity and dispersion, it can be calculated asymp-
totically (see for details, Pelinovsky and Choi, 1993). As a
result, the following system can be derived for waves in the
basin of constant depth

∂u

∂t
+ (u∇)u + g∇η =

h2

3

∂

∂t
∇

2u −
∇patm

ρ
, (24)

∂η

∂t
+ ∇ [(h + η)u] = 0. (25)

These simplified equations (they are of the Boussinesq
type) differ from the shallow-water Eqs. (8 and 9) in the pres-
ence of the high derivative of the horizontal velocity field in
Eq. (24). This system provides the possibility of observing
the process of tsunami generation by moving cyclone forma-
tions. Bearing in mind that the greatest efficiency of excita-
tion is achieved in the resonant case, when the cyclone moves
with the velocity,V close to the linear long wave speed,c,
we can further simplify the problem by considering it as a
unidimensional one. This results in the following system,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
=

h3

3

∂3u

∂t∂x2
−

1

ρ

∂patm

∂x
, (26)

∂η

∂t
+

∂

∂x

[
(h + η)u

]
= 0. (27)

Taking into account the resonant character of tsunami
generation, this system can be simplified. Let us re-write
Eqs. (26 and 27) in the form of a nonlinear wave equation for
the surface elevationη,

∂2η

∂t2
− c2 ∂2η

∂x2
=

∏
{η, u} +

h

ρ

∂2patm

∂x2
, (28)

∏
= −

∂

∂x

(
η
∂u

∂t

)
+

h

2

∂2u2

∂x2
−

h3

3

∂4u

∂t∂x3
. (29)

Here, the right-hand part of Eq. (28) can be treated as pro-
portional to a small parameter, characterizing the weak non-
linearity, dispersion and forcing. Using the linear relation,
u = ηg/c in Eq. (29), Eq. (28) can be reduced to (Akylas,
1984)

∂η

∂t
+ c

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
=

∂f

∂x
, (30)

where

α = 3c/2h, β = ch2/6, f = −hpatm/2cρ. (31)
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Equation (30) is the forced version of the famous
Korteweg-de Vries equation and currently it is considered
as one of the basic equations of the nonlinear mathemati-
cal physics. Its solution contains the set of solitary waves
(solitons) and dispersive tails (variable wave packets).

5 Soliton generation and interaction with a moving
forcing

The numerical solutions of the forced Korteweg-de Vries
equation described the wave generation by the moving atmo-
spheric disturbance are given in the paper by Akylas (1984)
and the following papers cited by Grimshaw et al. (1994).
To demonstrate the roles of solitons in the forced dynamics
of the water waves analytically, let us assume that the soli-
ton has already been formed and consider the process of its
amplification under the effect of a moving force. We suppose
that the forcing is sufficiently weak, so that the soliton retains
its form in the process of interaction (the condition for adi-
abatic interaction is slowness of variation of soliton parame-
ters on distances of the order of the nonlinearity length). The
solution for the forced Korteweg-de Vries equation is in the
form of the asymptotic series

η(x, t) = a(t)sech2 (0(t)[x − V t − 9(t)]) + ...,

0 = (αa/12β)1/2, 9(t) =

∫
(p0 + ...)dt. (32)

The procedure for obtaining the equations for the soliton
amplitude and velocity in the framework of the asymptotic
method is well-known (see, for instance, Grimshaw et al.,
1994). As a result, in the first approximation we obtain the
energy balance equation for the amplitude,

d

dt

∞∫
−∞

η2

2
dx =

∞∫
−∞

η
∂f

∂x
dx, (33)

and for the position (phase) of the soliton we have the fol-
lowing unperturbed relation,

d9

dt
= c − V +

αa

3
. (34)

These equations describe the simplified model of the pro-
cess of adiabatic interaction of the soliton with the moving
force. Given a cyclone of short duration, l acts as the delta
function,f (x) = bζ(x/l) in Eq. (33), whereb is its inten-
sity. For this function it is possible to calculate the integral in
Eq. (33). As a result, the Eq. (33) has the differential form,

da

dt
= −

αabl

12β
sech209tanh09. (35)

After transformation, a→ 0, 9 → θ = 09, the system
(Eqs. 34 and 35) reduces to

d0

dt
= −

αbl0

12β
sech2θ tanhθ, (36)

Fig. 3. Phase plane of system (Eqs. 36 and 37) for the “slow” moved
atmospheric disturbance.

dθ

dt
= 0(c − V + 4β02). (37)

All integral trajectories of this system can be found in the
explicit form,

αbl

24β
sech2θ = (c − V )0 +

4β

3
03

+ const. (38)

After substitutions,

αa0 = 3 | c − V |= 12β02
0, G = 0/00,

Q =
αbl

24β00 | c − V |
, (39)

(as it can be clearly seen below,a0 is the amplitude of steady
state generated soliton) the expression (Eq. 38) can be written
in the dimensionless form,

Qsech2θ = −Gsign(V − c) +
G3

3
+ const. (40)

The phase pattern of system (Eqs. 36 and 37), all the tra-
jectories of which are determined by Eq. (40), depends on the
signs of(c − V ) andQ. The last parameter in the physical
variables is

Q = −

√
6cpatml

16ρch | c − V |3/2
. (41)

First, we consider the case ofc > V . The phase pattern for
that case is shown in Fig. 3 forQ > 0 (negative atmospheric
disturbance). The main regime here is the regime of the
trajectory passage corresponding to fast motion of solitons
through the source region. The soliton amplitude grows at
the moment of interaction (and decreases at the opposite sign
of forcing) and recovers after interaction. At the phase plane
one can also see (in the region of low amplitudes) trajectories
that correspond to generation of virtual solitons. These soli-
tons are generated behind the source, then they grow, take
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Fig. 4. Phase plane of system (36) and (37) for the “fast” and posi-
tive source.

over the source and dissipate. The same regime exists for
Q < 0 (positive atmospheric disturbance); in that case the
solitons situated behind the source dissipate during interac-
tion, and a part of the solitons are generated in front of the
perturbation.

Let us consider now the opposite case,c < V . Dynamics
of solitary waves is much richer here. First, the equilibrium
state exists

αa0 = 3(V − c), θ = 0. (42)

It is equivalent to the existence of the steady-state soliton
propagating with the same velocity as the atmospheric distur-
bance (resonant generated soliton). Naturally, this is possible
only at the certain amplitudes of the solitary wave. The char-
acter of the equilibrium depends on the sign ofQ, in partic-
ular, forQ > 0, it is the center. The phase plane for this case
is displayed in Fig. 4. Near the equilibrium point the soliton
amplitude and phase oscillate, and this regime corresponds to
the soliton capture by the moving source. Here there are also
regimes of the trajectory passage and virtual solitary waves,
and they are clearly visible on the phase plane.

For Q < 0 the equilibrium point is the saddle and the
corresponding phase plane is displayed in Fig. 5. The main
regime here is the reflection of the solitary wave from the
moved zone of the atmospheric disturbance. In process of
the interaction with the moving forcing, the wave amplitude
varies having the next asymptotic values atθ → ±∞,

Gm(1 − G2
m/3) = GM(1 − G2

M/3), (43)

wherem andM characterize the minimal and maximal am-
plitudes. Maximally, wave amplitude (a∼ G2) can change
three times in the process of interaction with the moving forc-
ing.

As numerical solutions of the forced Korteweg-de Vries
equation showed, the simplified model given here yields a

Fig. 5. Phase plane of system (36) and (37) for the “fast” and nega-
tive source.

correct physical representation of the interaction between the
soliton and the moving forcing (Grimshaw et al., 1994). The
generalization of this theory for a case of the forcing moving
with variable speed, and also, taking into account the wave
dissipation, can be found in papers by Grimshaw et al. (1996,
1997).

The simplified theory given above takes into account the
interaction between the solitary wave and the moving forc-
ing. In reality, the number of waves interacting with the
atmospheric disturbance can be high and they may inter-
sect and interact between them, sometimes forming large-
amplitude waves.

6 Focusing of nonlinear-dispersive tsunami waves

Due to nonlinearity and dispersion, the individual waves and
wave packets propagate with different velocities and may
form a very complicated wave pattern containing the large-
amplitude and short-lived impulses. Such impulses in the
wind wave field are called thefreak or rogue waves, and
they are usually studied for deep water (Osborne et al., 2000;
Kharif et al., 2001). Some observed unconfirmed data of
joint observations of freak and tsunami waves and the link
between tsunami and freak waves are discussed by Peli-
novsky and Talipova (2001). The effects liked freak waves,
in our opinion, are possible for tsunami waves described by
the forced Korteweg-de Vries Eq. (30). Let us assume that
the moving (in general, with variable speed) zone of the at-
mospheric disturbances generates the tsunami waves with
different characteristics (amplitudes, wavelengths, wave-
forms). After leaving the generated area, the waves propa-
gate as free waves. In this case Eq. (30) can be reduced to
the Korteweg-de Vries equation

∂η

∂t
+ c

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
= 0. (44)

The forcing forms the initial conditions for this equation.
To demonstrate the wave focusing effect, let us consider the
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linear variant of Eq. (44),

∂η

∂t
+ c

∂η

∂x
+ β

∂3η

∂x3
= 0. (45)

The general solution of Eq. (45) can be expressed in the
Fourier form

η(x, t) =

∫
η(k)exp[i(ωt − kx)]dk, (46)

where

η(k) =
1

2π

∫
η(x, 0) exp ikxdx, (47)

andη(x, 0) is the initial waveform. In particular, when the
initial condition has the form of a delta-function,

η(x, 0) = Sδ(x) (48)

with positive (or negative) constantS, the integral Eq. (46) is
the Airy function (Abramowitz and Stegun, 1964)

η(x, t) = S

(
2

cth2

)1/3

Ai

[(
2

cth2

)1/3

(x − ct)

]
, (49)

and the wave field represents the frequency modulated wave
train with the leading long wave, its amplitude is decreased,
and length is increased. This solution is very often used
to demonstrate the dispersion effect, resulting in the wave
spreading and attenuation occuring with time. But due to the
invariance of Eq. (45) under a transformationx → −x, t →

−t , the “inverted” wave packet (Eq. 49) for any fixed mo-
mentT will transform into the delta-function (for time,T )
and then it will become dispersive according to Eq. (49). So,
the dispersion can lead to the focusing of the wave energy
on the finite distances. Of course, the “unbounded” focus is
outside of the applicability of the linear long-wave theory.
More realistic results can be obtained for the Gaussian im-
pulse with amplitudeA0 and widthK−1,

η(x, 0) = A0exp(−K2x2). (50)

The integral (Eq. 46) is calculated exactly in the explicit
form, and the wave field for any time is

η(x, t) =
A0

K
3
√

cth2

2

exp

{
1

2cth2K2

(
x − ct +

6

77cth2K4

)}
× Ai

x − ct +
9

77cth2K4

3
√

cth2

2

 . (51)

It describes the spreading of the initial Gaussian impulse
into the frequency modulated wave packet. The inverted
wave packet transformation is described by

η(x, t) =
A0

K
3
√

c(T −t)h2

2

exp

{
1

2c(T − t)h2K2

(
− (x − ct) +

6

77c(T − t)h2K4

)}

×Ai

−(x − ct) +
9

77c(T −t)h2K4

3
√

c(T −t)h2

2

 . (52)

Fig. 6. Focusing of frequency modulated wave packet.

As a result, the frequency modulated wave packet (Eq. 52)
transforms into the Gaussian isolated impulse (Eq. 50) for
t → T , and then transforms again into the frequency mod-
ulated wave packet (Eq. 51) by replacingt on t − T . This
process is illustrated in Fig. 6. The amplification in the focal
point can be significant. It is very important to note that the
appearance of the large-amplitude waves due to a focusing
mechanism is not related to the bathymetry features (caus-
tics), and may be on any distance from the shore. This mech-
anism requires the specific wave generation (weak-speed
waves should be generated before strong-speed waves) and
this is possible if the meteo-conditions above the sea are
enough complicated.

The wave focusing is also possible for the nonlinear-
dispersive waves. The results of the numerical simulation
of this process in the framework of the Korteweg-de Vries
equation are presented by Pelinovsky et al. (2000).

7 Conclusion

The main goal of this paper is to demonstrate possible ana-
lytical tests characterizing the role of nonlinearity, dispersion
and forcing in the processes of the tsunami generation by at-
mospheric disturbances; such solutions are important for the
interpretation of field data and the results of the numerical
simulations. The simplified linear and nonlinear shallow-
water models are presented, and their analytical solutions for
a basin of constant depth are discussed. The shallow-water
model describes well the properties of the generated tsunami
waves for all regimes except the resonance case, when the
wave amplitude tends to infinity. The nonlinear-dispersive
model based on the forced Korteweg-de Vries equation is de-
veloped to describe the resonant mechanism of the tsunami
wave generation by atmospheric disturbances moving with
near-critical speed (long wave speed). Some analytical so-
lutions of the nonlinear dispersive model describing the pro-
cess of the solitary wave interaction with the moving force
are obtained. They illustrate the steady-state and unsteady
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regimes of resonant soliton generation. The focusing of
waves in the process of their propagation is investigated. Ex-
act solution of the linear version of the Korteweg-de Vries
equation is obtained. Details of the focusing of the frequency
modulated wave packets are discussed.
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